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Abstract
The transport of free ions through highly under-expanded jet flows of neutral gases and in the
presence of applied electric fields is investigated by continuum-based (fluid) numerical
simulations. In particular, numerical results are described which are relevant to ion flows
occurring in quadrupole interfaces of mass spectrometer systems. A five-moment
mathematical model and parallel multi-block numerical solution procedure are developed for
predicting the ion transport. The model incorporates the effects of ion–neutral collision
processes and is used in conjunction with a Navier–Stokes model and flow solver for the
neutral gas to examine the key influences controlling the ion motion. The effects of the neutral
gas flow, electric fields (both dc and rf) and flow field geometry on ion mobility are carefully
assessed. The capability of controlling the charged particle motions through a combination of
directed neutral flow and applied electric field is demonstrated for these high-speed,
hypersonic, jet flows. The neutral dynamics is shown to have a strong influence on the ion
transport whereas the electric field imparts a more gradual effect. The combined effect of the
applied (dc and rf) electric field and neutral collision processes with the dilute neutral gas
results in a strong tendency for ion focusing towards the axis of symmetry, with the overall
efficiency governed by the mass-to-charge ratio.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ability to accurately predict and thereby understand
the often complex transport of charged particles through a
background neutral gas subject to electro-magnetic forces
is very important to furthering the understanding of many
advanced technological processes including those associated
with vapour deposition in material and semiconductor
processing [1], electric space propulsion devices [2, 3],
microsystems [4], plasma jets [5, 6] as well as space plasmas
[7]. The transport of ions through rapidly expanding and/or
jet flows is also very important to the operation of mass
spectrometers, such as liquid chromatography (LC)/mass
spectrometry (MS) systems used extensively in the trace
analysis of biological fluids for metabolites and natural
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biopolymers [8, 9] and in drug design [10]. The LC/MS
instruments make use of an atmospheric pressure ionization
technique whereby sample ions are generated at atmospheric
pressure from molecules which are contained in micro-
droplets and the resulting ions are then transported from
the atmospheric pressure conditions into a high vacuum
system for spectroscopic analysis. The performance of the
mass spectrometers is highly dependent on the ion transport
from the source region to the mass detectors. Gaining
an improved understanding of ion-source flows and related
transport phenomena is an active area of research.

This study is concerned with the modelling of the transport
of free ions through highly under-expanded jet flows of neutral
gases under the influence of applied electric fields produced
in the interface regions of quadrupole mass spectrometer
systems. Quadrupole interfaces generally consist of a radio-
frequency (rf) quadrupole as shown in figure 1. A variety
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Figure 1. Schematic diagrams of (LHS) an rf cylinder showing the electrode and insulator strip geometry and the more traditional,
equivalent, four-rod quadrupole configuration (from Prestage [11]) and (RHS) the quadrupole interface showing orifice, skimmer and
rf cylinder.

of quadrupole configurations are possible. In this study, two
different configurations are considered, namely, the traditional
four-rod quadrupole configuration as shown in figure 1 as
well as a novel configuration consisting of a single hollow
cylinder composed of alternating electrode and insulator strips
that produce the rf-quadrupole field [11], also shown in the
figure. The region upstream of the orifice is at atmospheric
pressure and, downstream of the quadrupole, a low pressure
is maintained. Ions are transported by the neutral gas from
the high-pressure reservoir through a small orifice and gas
skimmer and then on through the rf quadrupole as shown in
figure 1.

A five-moment continuum-based (fluid) model and
parallel multi-block numerical solution procedure are
described for predicting the ion transport in the complete
quadrupole interface. The five-moment model has been used
successfully in previous studies of ion transport in MS systems
by Jugroot et al [12, 13]. It provides ‘one-way’ coupling
between the ion and neutral flows by incorporating the effects
of ion–neutral collision processes. It can also account for the
effects of externally applied electric fields. A parallel explicit
higher-order Godunov-type finite-volume scheme is used to
solve the five-moment ion transport equations on a multi-block
quadrilateral mesh. The proposed scheme determines the ion
transport in the quadrupole interface, given a precomputed
neutral gas flow and electric potential.

2. Governing equations

2.1. Five-moment ion transport model

The transport of a mixture of a neutral gas and free ions is
considered. This mixture is not formally treated as a plasma,
but rather as a source of positively charged ions, for it is
assumed that there are no free electrons (plasmas comprise
neutral particles, ions and electrons and the charged particles’
transport is generally tightly coupled by electric/magnetic
applied/induced fields). For the purpose of this study, it is also

estimated and assumed that the ion number density is very low
compared with that of the neutral gas such that the ions have a
negligible effect on the neutral particles. Hence, the solution of
the ion and neutral gas flows can be decoupled. The neutral gas
flow field can be predetermined and then the prediction of the
ion motion can be carried out using this calculated neutral gas
solution. A five-moment closure continuum approximation
is used to model the motion of the ions through the more
dense neutral gas [14–17]. This mathematical description is
a single-temperature, near-equilibrium model that can take
into account the effects of ion–neutral collision processes
and applied external electric and magnetic forces. Ion self-
collisions (ion–ion collision processes) are neglected in this
approximation and hence the ion fluid stresses and heat flux
are assumed to be unimportant.

The governing transport equations of the five-moment
model reflect the conservation of mass, momentum and energy
and can be written in the non-conservative coordinate-free
form as
∂ρi

∂t
+ ∇ · (ρivi) = 0, (1)

∂vi

∂t
+ (vi · ∇)vi +

1

ρi
∇pi = Qi

mi
E +

Qi

mi
(vi × B)

+
∑

s

νis(vs − vi), (2)

∂pi

∂t
+ (vi · ∇)pi + γipi(∇ · vi) = δpi

δt
, (3)

where ρi = mini is the ion mass density, ni is the ion number
density, mi is the mass of the ion molecules, vi is the ion
velocity, pi = ρiRiTi = nikTi is the ion pressure, Ti is
the ion temperature, Ri is the ion ideal gas constant, k is the
Boltzmann constant, γi is the ion specific heat ratio, Qi is the
ion particle charge and E and B are the external electric and
magnetic fields. Ion–neutral collision processes are modelled
here using a generalization of the so-called relaxation time
or the BGK (Bhatnagar, Gross and Krook) approximation for
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the Boltzmann collision integral [14, 16–18]. In this modified
relaxation-time approach, the relaxation time is actually not
constant. Instead, the collision cross-section is assumed to be
constant and the collision frequency is taken to be dependent
on the local macroscopic solution quantities (i.e. number
densities and temperatures). The influences of the ion–neutral
collisional processes manifest themselves as source terms in
the ion momentum and energy equations, equations (2) and (3),
respectively. These terms involve a sum over all neutral gas
species, s, and depend on the momentum exchange collision
frequency, νis . The energy or pressure source term, δpi/δt , is
given by

δpi

δt
=

∑
s

ρimsνis

(mi + ms)2

[
2k(Ts − Ti) +

2

3
ms |vs − vi|2

]
, (4)

where Ts and vs are the temperature and velocity of neutral
species s and ms is the mass of the neutral species molecules.
The collision frequency, νis , can be related to the product
of the collision cross-section σis , neutral species number
density, ns , and relative speed of the colliding particles gis .

By utilizing the approximation that gis =
√

v̄2
i + v̄2

s =√
8kTi/πmi + 8kTs/πms , the following expression can be

obtained and used to prescribe the ion–neutral collision
frequency [17]:

νis = σisnsgis = σisns

√
1 +

msTi

miTs

√
8kTs

πms

. (5)

The relaxation-time model is only an approximation to the
Boltzmann collision integral and ignores the detailed nature of
inter-particle interactions. Nevertheless, it retains many of the
qualitative features of the true collision integral and is thought
to be sufficient for this study of ion transport phenomena in
mass spectrometer systems.

For a two-dimensional axisymmetric coordinate system,
a neutral gas consisting of a single neutral species s = n and
negligible magnetic fields (B = 0), the conservative form of
the five-moment equations governing the ion transport can be
summarized as follows:

∂Ui

∂t
+

∂Fi

∂z
+

∂Gi

∂r
= Sai + Sei + Sci, (6)

where Ui is the conserved variable solution vector given by

Ui = [ρi, ρiui, ρivi, ρεi]T, (7)

z and r are the axial and radial spatial coordinates of the
axisymmetric frame, ui and vi are the ion axial and radial
velocity components, εi = pi/(ρi(γi − 1)) + |vi|2/2 is the
specific total energy, Fi and Gi are the axial- and radial-
direction solution flux vectors given by

Fi =




ρiui

ρiu
2
i + pi

ρiuivi

ui(ρiεi + pi)


 , Gi =




ρivi

ρiuivi

ρiv
2
i + pi

vi(ρiεi + pi)


 (8)

and Sai, Sei and Sci are source vectors associated with the
axisymmetric coordinate frame, electric fields and ion–neutral
collision processes, respectively. The latter are given by

Sai = −1

r




ρivi

ρiuivi

ρiv
2
i

vi(ρiεi + pi)


 , (9)

Sei =




0

ρi
Qi

mi
Ez

ρi
Qi

mi
Er

ρi
Qi

mi
(uiEz + viEr)




, (10)

Sci =




0
ρimnνin

mi + mn
(un − ui)

ρimnνin

mi + mn
(vn − vi)

1

γi − 1

δpi

δt
+

ρimnνin

mi + mn
[ui(un − ui)

+vi(vn − vi)]




, (11)

where Ez and Er are the axial and radial components of the
electric field and un and vn are the axial and radial components
of the neutral gas velocity. Note the presence of Joule heating
terms associated with the applied electric field in the source
terms of the energy equation. The equation set of (6) is
used here to predict ion particle motion through a high-speed
neutral gas.

For low-speed ion flows through a single-species,
stationary, neutral gas (neglecting inertial effects), the ion drift
velocity can be directly related to the applied electric field. It
follows from the ion momentum equation that

vi = Qi(mi + mn)

mimnνin
E = ηinE, (12)

where ηin = Qi(mi + mn)/mimnνin is the ion mobility. It is
readily apparent from this expression that the BGK collision
model leads to a linear relationship between the drift velocity
and the electric field. Furthermore, the mobility derived from
these expressions was found to be in very good agreement with
empirical/experimental formulations [19].

2.2. Navier–Stokes model for neutral flow

A near-thermal-equilibrium continuum model is also used to
describe the neutral gas flows. The neutral flow is assumed
to be laminar and the gas is taken to be both calorically and
thermally perfect and to obey the ideal gas equation of state,
pn = ρnRnTn, where pn is the static pressure of the neutral gas,
ρn = mnnn is the neutral gas mass density, nn is the neutral gas
number density, Tn is the neutral gas temperature and Rn is the
gas constant. Due to the low concentration of ions particles
relative to the concentration of neutral molecules, ion–neutral
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inter-particle interactions have an insignificant influence on the
motion of the neutral gas. It is therefore appropriate to assume
that the neutral gas flow is unaffected by the ion particles.
Accordingly, the well-known Navier–Stokes equations for a
compressible fluid govern the transport of the neutral gas.
For a two-dimensional axisymmetric coordinate system, the
conservation form of these equations can be expressed as

∂Un

∂t
+

∂Fn

∂z
+

∂Gn

∂r
= ∂Fvn

∂z
+

∂Gvn

∂r
+ San, (13)

where Un is the neutral gas conserved variable solution vector
given by

Un = [ρn, ρnun, ρnvn, ρnεn]T, (14)

Fn and Gn are the axial- and radial-direction inviscid flux
vectors given by

Fn =




ρnun

ρnu
2
n + pn

ρnunvn

un(ρnεn + pn)


 , Gn =




ρnvn

ρnunvn

ρnv
2
n + pn

vn(ρnεn + pn)


 (15)

and Fvn and Gvn are the axial- and radial-direction viscous flux
vectors given by

Fvn =




0

τnzz

τnrz

unτnzz
+ vnτnrz

− qnz


 ,

Gvn =




0

τnrz

τnrr

unτnrz
+ vnτnzz

− qnr


 .

(16)

The vector San contains source and viscous flux terms
associated with the axisymmetric geometry and has the form

San = 1

r




−ρnvn

−ρnunvn + τnrz

−ρnv
2
n + τnrr

− τnθθ

−vn(ρnεn + pn) + unτnrz
+ vnτnrr

− qnr


 . (17)

The variables un and vn are the axial and radial components
of the neutral gas velocity, vn, respectively, and εn = pn/

(ρn(γn − 1)) + (u2
n + v2

n)/2 is the specific total energy. The
components of the viscous stress tensor, τ n, are given by

τnij
= µn

(
∂vni

∂xj

+
∂vnj

∂xi

− δij

2

3
∇ · vn

)
, (18)

and the axial and radial components of the heat flux vector,
qn, follow from Fourier’s law, qn = −κn∇Tn, where µn is the
dynamic viscosity, κn is the thermal conductivity and γn is the
specific heat ratio for the neutral gas. Sutherland’s law is used
to prescribe the viscosity. Equation (13) is used here to model
the high-speed flow of the neutral gas. The validity of the
preceding equations for describing the high-speed neutral jet
flows of interest here has been clearly demonstrated in previous
studies by the authors [20].

3. Numerical solution procedure

3.1. Solution of ion transport equations

A parallel explicit higher-order Godunov-type finite-volume
scheme is used to solve the five-moment ion transport
equations given by equation (6) on multi-block quadrilateral
meshes. The proposed scheme determines the ion motion
given a precomputed neutral gas flow field and electric
potential. In the finite-volume approach, the governing
equations are integrated over quadrilateral cells of a
structured multi-block quadrilateral mesh. This finite-volume
formulation applied to cell j is given by

dUij

dt
= − 1

Aj

∑
faces,k

�Fijk
· �njk
�jk + Saij + Seij + Scij , (19)

where �Fi = (Fi, Gi), Aj is the area of cell j and 
�jk and
�njk are the length of the cell face k and unit vector normal
to the cell face or edge, respectively. The numerical fluxes at
the faces of each cell are determined from the solution of a
Riemann problem. Given the left and right solution states, Uil
and Uir , at the cell interfaces, the numerical flux is given by

�Fi · �n = Fi(Uil , Uir , n), (20)

where the numerical flux Fi is evaluated by solving a Riemann
problem in the direction defined by the normal to the face
with initial data Ul and Ur. The left and right solution states
are determined using the least-squares limited piecewise linear
solution reconstruction procedure of Barth [21]. The modified
limiter of Venkatakrishnan [22] has also been implemented.
In the present algorithm, both exact and approximate Riemann
solvers can be used to solve the Riemann problem. The
Roe linearized Riemann solver [23], the HLLE-type flux
function of Linde [24], the HLLC flux function [25] and
the exact Riemann solver of Gottlieb and Groth [26] have
all been implemented and may be used. For time-accurate
calculations, predictor–corrector and fourth order Runge–
Kutta time-marching methods are used to integrate the set
of ordinary differential equations that result from this spatial
discretization of the governing equations. The optimally
smoothing multi-stage schemes developed by van Leer et al
[27] are adopted for steady-state calculations. To cope
with numerical stiffness, a semi-implicit treatment is used
in the temporal discretization of the source terms associated
with axisymmetric geometry, electric field and ion–neutral
collisions.

Following the approach developed by Groth et al for
computational magnetohydrodynamics [28, 29], a flexible
block-based hierarchical data structure is used to maintain the
connectivity of the quadrilateral solution blocks in the multi-
block mesh and facilitate automatic solution-directed mesh
adaptation according to physics-based refinement criteria.
This data structure also lends itself naturally to domain
decomposition and thereby enables efficient and scalable
implementations of the algorithm on distributed-memory
multi-processor architectures.
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3.2. Solution of neutral flow equations

A commercial computational fluid dynamics flow solver
(CFD++, developed by Metacomp Technologies) is used to
predict the high-speed expanding neutral gas flows. This flow
solver employs an upwind total variation diminishing (TVD)
finite-volume spatial discretization scheme in conjunction with
a multigrid accelerated implicit time-marching procedure to
solve the compressible axisymmetric form of the Navier–
Stokes equations on unstructured triangular meshes [30, 31].
A V-cycle and Gauss–Seidel smoother are employed in the
multigrid convergence acceleration strategy. Clustering of the
cells in the computational mesh may be used to help capture
the important features of the complex neutral flows. The
commercial solver also has parallel processing capabilities.
The parallel implementation of the neutral gas solver has been
developed using the MPI library [32] for performing inter-
processor communications and the METIS graph partitioning
software for performing a domain decomposition of the
computational mesh [33]. The neutral flow solution is
independent of the ion solution and can be obtained in a
separate calculation. Linear interpolation is used to transfer
the neutral flow solution from the unstructured triangular mesh
used in the solution of the neutral flow equations to the multi-
block quadrilateral mesh used by the finite-volume scheme for
the ion transport equations.

3.3. Modelling of electric field

3.3.1. Dc electric potential. Like the neutral flow solution,
the electric field is not dependent on the predicted ion
solution and can also be determined in a separate independent
computation. Assuming that the net charge density in the fluid
volume of interest is negligible (i.e. although there is an excess
of charge due to a lack of electrons or negative species, space
charge effects can be neglected because of the low ion number
densities), the stationary applied electric field, E, satisfies
Gauss’ law ∇ · E = 0. By expressing the electric field in
terms of an electric potential, V , such that E = −∇V , the
electric field can be determined by solving a Laplace equation
for the electric potential. For a two-dimensional axisymmetric
coordinate frame, the potential equation has the form

∂2V

∂z2
+

∂2V

∂r2
+

1

r

∂V

∂r
= 0. (21)

An iterative solution procedure is used to solve equation (21)
for V , subject to being appropriate for the applied voltages.
This provides a complete description of the steady-state dc
electric field.

3.3.2. Pseudo-potential for rf quadrupole. In this study, the
traditional four-rod and novel hollow cylinder (with alternating
electrode and insulator strips) configurations for rf quadrupoles
are both considered. The rf field produced by the quadrupole is
used to confine and focus the ions downstream of the skimmer
into a narrow region near the axis of symmetry. By design, the
rf field of the hollow cylinder is fully equivalent to the field
created by the more traditional four-rod configuration [11]

and in both cases a pseudo-potential formulation is used to
prescribe the time-averaged electric field produced by the
quadrupole. Although the pseudo-potential representation
does not account for the micro-motion induced by the rf
potential applied to the quadrupole, it does represent the time-
averaged influence of the field on the bulk motion of the ions
which is of primary interest here.

The radial confinement of the ions in a quadrupole field can
be described by the Mathieu equation [34, 35]. The Mathieu
equation has two types of solutions and can be characterized
by the Mathieu parameter. The Mathieu parameter, q, is a
measure of the stability of ions within the quadrupole and
characterizes the maximum ion macro-motions permissible
within the potential well produced by the time-averaged
electric field. The Mathieu parameter can be expressed as
q = 2QiUrf/miω

2r2
0 , where ω is the frequency of the applied

rf field, r0 is the radius of the hollow cylinder (the inscribed
radius for conventional four-rod configurations) and Urf is the
peak-to-peak voltage of the rf field. If the rf voltage, Urf , is
adjusted for each ion of a given mass, mi, such that the value
of the Mathieu parameter, q, is fixed, the pseudo-potential or
time-averaged effective potential can be expressed as follows:

Vquad = γrf
q2miω

2r2

16Qi
, (22)

where r is the radial distance from the axis of the quadrupole.
Note that the effective potential can also be corrected by a
term γrf reflecting the gas collisional latency effects on the
rf focusing field [36], but has a negligible impact on the low
pressure regimes considered here. The effective electric field is
then given by the gradient of Vquad and thus the radial and axial
components of the pseudo-potential field within the rf cylinder
are Er = −q2miγrfω

2r/8Qi and Ez = 0, respectively. From
this, it should be quite evident that the electric field is expected
to exert a confining/focusing effect on the ions. The pseudo-
potential field arising from the quadrupole is superimposed on
the calculated dc potential solution and used directly in the
calculation of the ion flow.

4. Numerical results and discussion

The mathematical formulation and solution algorithm outlined
above have been used to perform numerical simulations of
the transport of free ions through highly under-expanded jet
flows of neutral gases within quadrupole interfaces of mass
spectrometer systems. The simulations were carried out on
a parallel cluster consisting of 4-way Hewlett-Packard ES40,
ES45 and Integrity rx4640 servers with a total of 244 Alpha and
Itanium 2 processors and 482 Gbytes of distributed memory.
The results of the computations for axisymmetric neutral
skimmer/quadrupole and pure quadrupole jets and ion flows
under the action of dc and rf applied electric fields are now
described.

4.1. Neutral gas transport

The neutral gas exhaustion through the orifice leading to
the interface region of mass spectrometer systems with low
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Figure 2. Schematic diagram of the skimmer jet flow shock
structure showing the skimmer shock (S), the coalescing reflected
compression waves from the jet boundary (J), the reflected shock
(R) and a succession of expansion/re-compression cells (from [20]).

background pressures undergoes a rapid expansion process
and forms an under-expanded jet with high core flow Mach
numbers. However, as discussed by Jugroot et al [20], the
overall structure of the neutral jet with a gas skimmer present
is quite different from that of a classical under-expanded free
jet. The presence of the skimmer disrupts and prevents the
formation of the free jet structure. The flow is deflected by
the tip of the skimmer as the supersonic jet expands out from
the orifice. A Mach disc does not form and the neutral gas
remains highly supersonic in the core of the jet far downstream
of the orifice and skimmer. The skimmer not only confines the
jet expansion process but also acts to divide the neutral flow,
diverting a significant portion of the neutral particles. Figure 2
provides a schematic diagram of the skimmer flow and shock
structure, illustrating the essential flow features, including the
skimmer shock and succession of expansion/re-compression
cells occurring downstream of the skimmer.

In many MS interfaces, a quadrupole electric field is
used to focus the ions downstream of the gas skimmer in
preparation for a subsequent mass analysis. For the hollow
cylinder rf quadrupole, the overall neutral flow is therefore
further modified by the presence of the hollow cylinder as
depicted in the predicted neutral flow solution of figure 3.
For the case shown in the figure, a supersonic neutral gas
emanates from an orifice of diameter, do = 0.25 mm, with
an axisymmetric conical-shaped skimmer having a skimmer
orifice diameter of ds = 2.5 mm and a cone angle of αs = 60◦.
The tip of the skimmer is located 2 mm downstream of the
orifice and a hollow cylinder rf quadrupole is located 19 mm
away from the tip of the skimmer (21 mm downstream of the
orifice). Internal and external diameters of the cylinder are
8.4 mm and 9.0 mm, respectively. The cross-section of the
cylinder is more than 10 times that of the skimmer orifice.
The numerical neutral solution was obtained with a 60 000-cell

Figure 3. Neutral streamlines and distributions of the Mach number
for a jet flow with an orifice diameter of 0.25 mm, skimmer diameter
of 2.5 mm and cylinder diameter of 8.4 mm. The upstream pressure
is 760 Torr and the pressure is 1 Torr and 5 mTorr downstream of the
orifice and skimmer, respectively. (Colour online.)

Table 1. Physical properties of ions particles.

Ion A B C D E

Mass (a.m.u) 105 228 609 16 951 692 000
Charge +1 +1 +1 +9 +65
σi (10−20 m2) 105 150 280 2560 19 400
γi 1.2 1.1 1.1 1.05 1.05

unstructured triangular mesh. Mesh clustering has been used
to capture the important features of the flow.

The results of figure 3 indicate that, as expected, the
upstream features of the neutral flow are not modified by the
quadrupole cylinder; however, the effects of the cylinder on
the flow are clearly visible downstream of the skimmer tip.
The cylinder prevents the flow from further expanding freely,
concentrating the flow towards the axis. The Mach number
remains relatively high in the core of the jet (M ≈ 2–4) and
then becomes subsonic near the entrance to the hollow cylinder.
A stationary shock forms just upstream of the leading edge of
the cylinder, which acts to deflect the oncoming supersonic
neutral flow and produces a subsonic flow at the cylinder
entrance. The flow through the cylinder is subsonic with
M ≈ 0.2–0.3.

4.2. Ion transport in quadrupole interface

The transport of ions through the neutral flow described
above is now considered for several different ions with
varying mass-to-charge ratios. The influences of the applied
electric field (dc and rf) and neutral particles collisions are
discussed. The numerical solutions for the ion flow were
obtained using the parallel finite-volume method described
previously with a total of 34 solution blocks and 100 000
quadrilateral computational cells. Table 1 provides a
summary of the ions considered. The five ions listed
in the table are A (a generic low mass-to-charge ion);
B (dodecyltrimethyl ammonium, C15H34N), C (a reserpine
protonated molecule, C33H40N2O9.H+), D (myoglobin—a
protein) and E (proteasome 20S).
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Figure 4. Computed ion particle (black) and neutral gas (purple) streamlines and distributions of the ion velocity (m s−1) for under-expanded
skimmer jet flows. Results in upper and lower panels show ion B for an applied dc potential (without rf quadrupole) and a combined dc/rf
potential (quadrupole with q = 0.2), respectively. The potential on the orifice is 80 V and the skimmer is grounded. (Colour online.)

4.2.1. Hollow cylindrical quadrupole. Figure 4 depicts
the trajectory of ion B and highlights the differences
between an applied dc potential (orifice-skimmer only) and
a superimposed dc/rf potential for the quadrupole interface,
as shown in the upper and lower panels. The effect of the rf
potential within the cylinder is clearly evident as the ions are
focused towards the axis of symmetry. The rf cylinder is in
fact very efficient in focusing the ions. The mass flux of ions
through the quadrupole is about 37% higher than that of the
mass flux through the equivalent cross-section in the skimmer-
only case.

Figure 5 compares the trajectories of ions A and C in
the quadrupole interface as a result of the dc-rf superimposed
field. For the results shown in the figure, the quadrupole
pseudo-potential is the same for both ions with q = 0.2 for
ion A and q = 0.08 for ion C. In general, the same global
behaviour is observed for all the ions investigated. At the
exit of the orifice, the ions follow the neutrals, but as they
approach the skimmer regions, the ion trajectories clearly
deviate from those of the neutrals due to the high electric
field at the skimmer tip. Depending on the ion mass and
charge, the ions exhibit a clear tendency to follow the diverging
electric field lines and are strongly accelerated by the electric
field. Joule heating and drag forces also lead to elevated ion
temperatures in this region. Beyond the skimmer tip region,
where the magnitude of the electric field gradually diminishes,
all ions tend to be again governed by the neutral flow. Finally,

the imposed pseudo-potential of the rf quadrupole produces a
strong focusing of the ions towards the axis of symmetry. In
fact, the rf field appears to be very efficient in confining the
ions as depicted in figures 4 and 5.

Further optimization of the ion transmission efficiency
is possible by tailoring the applied electric fields. This
is demonstrated by the numerical results of figure 6 where
enhanced focusing is achieved by applying a dc potential
between the skimmer and the cylinder. The modified electric
field lines redirect the ions towards the axis and remain focused
downstream.

4.2.2. Traditional four-rod quadrupole. For comparison
purposes, the traditional four-rod quadrupole has also been
investigated. This interface consists of an orifice and a set
of four rods downstream of the orifice. The atmospheric
conditions are maintained in the reservoir upstream of the
orifice and the background pressure in the quadrupole chamber
is maintained at 2.3 Torr. The pressure is 5 mTorr at the exit
aperture (into the next chamber) for the cases described herein.
The predicted neutral gas and ion flow solutions are shown
in figure 7 for this case. The figure depicts the solution
in a vertical passing through the axis of symmetry for the
quadrupole and lying in between the rods. The rods are
not visible in the figure. Note that the neutral solutions for
the four-rod quadrupole are inherently three-dimensional in
nature; however, in the core region of the flow near the axis of
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Figure 5. Computed ion particle (black) streamlines and distributions of the ion velocity (m s−1) for under-expanded skimmer jet flows.
Results in upper and lower panels show two ions of different mass-to-charge ratios (ions A and C), respectively, for a combined dc/rf
potential (q = 0.2 for ion A and q = 0.08 for ion C). (Colour online.)

Figure 6. Computed ion particle B (black) streamlines and distributions of the ion velocity (m s−1). The potential on the orifice is 80 V and
the skimmer is maintained at 20 V while the external cylinder layer is grounded; the Mathieu parameter for the quadrupole pseudo-potential
is q = 0.2. (Colour online.)

symmetry which is of particular interest for the ion trajectory
simulations, an axisymmetric representation is reasonable and
is therefore used as a first approximation. A projection of the
three-dimensional solution on to a plane shown in figure 7 is
used for the calculation of the ion–neutral coupling. Likewise
an axisymmetric representation of the electric fields is used in
these simulations.

The predicted neutral flow solution shown in the upper
panel of figure 7 indicates that the flow impacts the tip of
the rods upstream as the supersonic jet expands out from the

orifice. The neutral flow is partially diverted by the rods but
a significant portion of the neutral gas however remains well
focused within the rods further downstream as indicated by the
streamlines which are aligned with the rods in the core of the
flow. The predicted ion motion corresponding to this projected
neutral flow solution is shown in the lower panel of figure 7.
The ion streamlines indicate significant focusing of the charged
species towards the axis of symmetry after the initial losses
near the entrance to the quadrupole. Downstream of the rod
entrance, the confining effect of the rf voltage is well observed
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Figure 7. Computed ion particle (black) and neutral gas (purple) streamlines and distributions of the ion and neutral velocity (m s−1) for
quadrupole jet flows. Results show ion B for q = 0.2. The orifice diameter is 0.6 mm and the inter-electrode distance is 4 mm; the tip of the
rod is 2 mm away from the orifice. (Colour online.)

in the ion motion and prevents the ions from diffusing far from
the axis of symmetry. In quantitative terms, the neutral flux
through the exit aperture (as compared with the flow through
the orifice) is 10.7%, whereas the corresponding ion flux is
66% for the case presented, clearly indicating the benefit of the
quadrupole field. Some ion loss is observed in the exit aperture
region as a result of entrainment by the neutral gas, but this loss
is not significant. To summarize, due to neutral/ion collisions,
the neutral gas dynamics has a localized but strong effect on
the ion trajectories, especially in the supersonic jet upstream
and at the entrance of the quadrupole, whereas the electric field
has a more gradual influence on the ions, as illustrated by the
gradual confinement of the ion streamlines. Globally, these
two effects can be combined to control ion transport through
the interfaces of mass spectrometer systems.

5. Concluding remarks

The transport of free ions through highly under-expanded jet
flows of neutral gases and in the presence of applied electric
dc and rf fields has been investigated using continuum-based
(fluid) numerical simulations. A five-moment mathematical
model and parallel multi-block numerical solution procedure
have been developed and described for predicting the ion
transport. The model incorporates the effects of ion–neutral

collision processes and is used in conjunction with a Navier–
Stokes flow solver for the neutral gas to examine the key
features of the ion motion. The combined effect of the
applied (dc and rf) electric field and neutral collision processes
with the diluted background gas results in a strong tendency
for ion focusing towards the axis of symmetry, with the
overall efficiency of the focusing being governed by the mass-
to-charge ratio. The neutral gas dynamics has a strong
influence on the ion transport whereas the electric field
imparts a more gradual effect. Future work will involve
extending the modelling to three-dimensional flow geometries
and investigating the application of high-order moment models
to describe non-equilibrium ion transport phenomena.
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