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Aircraft structural design is becoming increasingly oriented towards multifunctional structures, which

are capable of supporting large loads while exhibiting additional functional capabilities; morphing is

an example. Composite materials, which are highly prevalent in aircraft today, provide the perfect

testbed for such morphing technologies. Dual-matrix composites are being investigated by a number of

researchers, with the primary application being deployable structures in space. This work investigates

a more load-intensive application in aircraft cabin interiors. A morphing composite meal-tray table

prototype is fabricated and tested. The macromechanics of dual-matrix laminates are investigated, with

the focus being the tailoring of the bending stiffness of such laminates. The cross-section anticlastic

deflections of ±45◦ layups, due to Poisson ratios close to unity, are shown to increase the bending

stiffness of the laminate, resulting from an increased second moment of area. A predictive model for

bending stiffness is constructed, compared with FEA and experiments, and its limitations in predicting

woven-fabric composite behaviour are discussed.
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Chapter 1

Introduction

1.1 Motivation

Aviation has been at the forefront of technological advance for decades, with aerospace developments

subsequently filtering into numerous other industries. Global aviation accounts for 12% of carbon dioxide

emissions from transportation, and 2% of all human-induced carbon dioxide emissions [17]. Therefore,

the demand for sustainable aviation is ever increasing, and as a result, mounting pressure is being placed

on aircraft companies to develop innovative technologies that reduce the carbon footprint of aviation.

Typically, the primary focus is on engine efficiency, given that engines are directly emitting harmful

substances into the atmosphere. However, there is a myriad of other factors which also influence the

efficiency of an aircraft, one of which is the structural weight. A reduction in an aircraft’s weight improves

its efficiency, prior to any changes made to the engine. Of course, the combined improvements in all

aspects of the aircraft’s design produce the greatest advancements in achieving sustainable aviation.

There are a number of ways to reduce the structural weight of an aircraft. Currently, the most preva-

lent design method is to use alternative materials, specifically fibre composites, which exhibit superior

strength- and stiffness-to-weight properties. Previously, the manufacturing challenges surrounding com-

posite materials made them a high-risk alternative as well as expensive compared to metals. However,

the advancement of manufacturing techniques has allowed the industry to expediently produce reliable

components at a relatively low cost. As a result, many new aircraft designs that are coming to fruition

make substantial use of composites, specific examples of this being the Boeing 787 and Airbus A350,

which have 50% [6] and 53% [2] composites by empty weight respectively. Composites also have superior

design flexibility compared to most materials, allowing for stiffness tailoring through customization of

the primary constituents (i.e. the fibres and matrix).

A combination of the transition to composite materials and the desire for morphing has resulted in

recent research into morphing composites. The objective is to design a lightweight structure that is capa-

ble of achieving a desired shape change. There are various methods that are investigated by researchers,

which are discussed in Chapter-2. This thesis investigates one particular method, which is dual-matrix

composite structures, and certain phenomena associated with the morphing of such composites.

The benefit of morphing is the development of multi-functional structures comprised of fewer and

smaller components than current designs. The structure itself achieves large deformations without com-

promising its load-carrying capability. This is a tremendously difficult design requirement, particularly

1



Chapter 1. Introduction 2

in the case of morphing skins (see Section-2.1). In addition, aircraft skins are required to be impervi-

ous, prohibiting the use of cut-outs to facilitate these deformations. Despite the many challenges, the

aerospace industry is hopeful that morphing structures will offer a solution to the demand for reduced

weight, aerodynamically improved surfaces, and reduced noise.

1.2 Thesis Outline

The objective of this work is to investigate the morphing of dual-matrix fibre composites, by means of

stiffness tailoring. Research has been conducted previously by a number of authors who have investigated

the use of flexible resin material in place of epoxy resin, which is more commonly used in conventional

laminates. Chapter-2 discusses this research in more detail and also delves into the literature pertinent

to it. Other forms of stiffness tailoring are also presented in order to provide sufficient background to this

work. The principles of anticlastic bending are also introduced to build a foundation for later chapters

which explore the application of the anticlastic theory.

Chapter-3 discusses the manufacturing process of a dual-matrix laminate, including material selec-

tion. Various experimental results for different laminate layup configurations and resin materials are

presented, and the mechanical properties thereof are determined. Due to the large number of variables in

the composite fabrication process, it is essential to determine the properties experimentally as opposed

to relying on the theoretical predictions of classical lamination theory, especially given the novelty of

using a high-strain compliant elastomeric resin.

The mechanical properties are then used in the investigation of the anticlastic curvature due to

Poisson effects. Chapter-4 presents the governing equations and theoretical model of the anticlastic

phenomenon in composites, with verification using Abaqus finite element analysis (FEA) software. The

increase in the bending stiffness of composite laminates, due to anticlastic effects, is investigated. A minor

shift in the cross-section neutral axis is observed and further investigated. Experimental validation is

attempted using woven-fabric elastomeric composites. The results are presented in Section-4.4, showing

that the analytical model does not provide accurate results, since it assumes unidirectional lamina.

This research is applied to a morphing composite meal-tray table for Bombardier Aerospace com-

mercial aircraft. The design, analysis and manufacture of the prototype is detailed in Chapter-5. Some

other applications are briefly discussed for possible future development.

Finally, Chapter-6 concludes this work and provides recommendations for future development of the

dual-matrix technology for morphing applications.



Chapter 2

Literature Review

There has been a significant increase in the research of morphing structures in the last few years, yet

the concept of morphing structures in aerospace is not novel. The 1903 Wright Flyer, for example,

used twist morphing for roll control [5]; this was relatively easy to achieve because of the flexibility of

the wings, which were made of wood and fabric. Due to the combination of increasing safety demands

and more structurally demanding roles for aircraft, subsequent designs had much greater stiffness and

therefore less freedom to morph. Consequently, some of the first designs of morphing aircraft typically

utilized heavy mechanical systems to achieve a desired configuration change of the aircraft with little

deformation of the structural components themselves. These designs certainly achieved their intended

purpose by providing beneficial morphing characteristics; however, more recent designs have shown

a move toward lighter systems resulting from the morphing of materials and structures. Figure-2.1

shows a timeline of various morphing designs in aviation, each design morphing one or more of the

geometric parameters of the aircraft. It can be seen here that prior to 1985, almost all the designs

achieved large changes in geometry by mechanical morphing mechanisms, but the introduction of the

Mission Adaptive Wing (MAW) on NASA’s F-111 testbed demonstrated the potential for relatively

small geometric changes (camber in this instance) including deformation of the outer structure, that is,

the skin. Since then, research in this field has been primarily focused on the challenge of designing a

structure and skin combination which is stiff enough for effective load carrying yet compliant enough to

allow for deformation. Subsequent sections of this chapter discuss the various techniques that researchers

have investigated in order to tackle this problem.

The most recent development in this field is the morphing of high-lift devices. The benefits of flap

morphing (or more generally, camber morphing) are lighter structures, improved aerodynamics, and

reduced noise emission, all of which subsequently yield an improved fuel efficiency. As of 2015, camber

morphing is much closer to reaching commercial insertion with NASA flight testing a morphing flap

concept known as FlexFoil. Srihar Kota, the founder of FlexSys, Inc. and chief designer of the flap,

claims that the flap is able to support up to 430% of the design limit load [33]. The flap is thus over-

designed, resulting in a structure that is heavier than necessary. Therefore, optimization of the design

will most likely achieve a significant weight saving compared to a conventional flap. Figure-2.2 shows a

demonstration of the flap as well as the internal structure; the structure depicted here is from the patent

and is thus not the final design.

3
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Figure 2.1: Morphing aircraft designs through the years, showing different techniques for achieving
specific types of morphing [5].

2.1 Morphing Skins

The most challenging design requirement of a morphing structure is a skin that exhibits both in-plane

compliance and out-of-plane stiffness. There has been significant research in the development of skins

suitable for morphing applications as highlighted by Thill et al. [41]. The design of a particular morphing

skin will be determined by the desired mode of morphing. For instance, an area change of the skin

requires it to be stretched, but typical aerospace materials such as aluminum are extremely stiff and

exhibit positive Poisson ratios. Alternate solutions include elastomeric materials, auxetic materials, and

composites.

Elastomers, such as silicone rubber, are materials capable of relatively large elastic strains (in excess
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(a) Prototype Demonstration [16] (b) Flap internal structure [23]

Figure 2.2: FlexSys Inc.’s FlexFoil morphing flap concept. The flap can achieve large deflections and
support large aerodynamic loads. The internal structure depicted here is from the patent, and therefore
not the final design.

of 400%) with high Poisson ratios, but they are not ideal for load carrying due to their high compliance.

This gives rise to the design of elastomeric composites, which are particularly relevant to this work and

are discussed in more detail in Section-2.2.3 and Section-2.2.4.

Auxetic materials are characterized by their negative Poisson ratio (i.e. stretching results in a per-

pendicular expansion). Alderson et al. [3] demonstrate two different designs of auxetic composites. The

first design uses a unique laminate layup of ordinary unidirectional carbon epoxy prepreg. However, the

auxetic effect is observed in the through-thickness direction which does not prove useful in preserving

the width of a composite laminate when it undergoes axial deformation. The second design uses auxetic

fibres in an epoxy resin. These fibres are useful for preventing fibre pullout since they are self-locking

due to their expansion when the laminate is stretched. This is not so relevant to bending applications

where fibre pullout is less likely to occur.

Composites with a Poisson ratio of zero (known as zero-ν composites) have also been considered. For

example, some honeycomb cores consist of two mechanisms within the core, each having Poisson ratios

of opposite sign. As a result, the hybrid core exhibits an overall zero Poisson ratio [34]. Furthermore,

this design features high out-of-plane stiffness as with uniform honeycomb structures [41]. The Poisson

effect in composites poses some challenges as well as benefits which are discussed in Chapter-4.

2.2 Stiffness Tailoring of Composites

Stiffness tailoring is innate to the design of composite materials. Composite laminate layups in general

have in-plane stiffness tailoring, that is, the fibre orientation is designed to achieve desired mechanical

properties in a particular direction. The stiffness tailoring of interest in this work is that of out-of-

plane compared to in-plane stiffness. There are two opposing reasons for this, the first of which is that

external aircraft structural components are subjected to large out-of-plane aerodynamic loads while in-

plane deformation is desired. Secondly, certain morphing applications require low out-of plane stiffness

as with bending, but they still need to resist in-plane loads. The following sections present the literature

pertaining to techniques for stiffness tailoring of composites including the use of underlying structures

as well as unaided laminates.

2.2.1 Stiffness Tailoring Using Underlying Structures

One way to tailor the stiffness of a structure is by designing an underlying structure to which a compliant

skin attaches. The structure provides out-of-plane stiffness and in-plane compliance while the skin is

flexible enough to deform yet provide a smooth aerodynamic surface. One example of such a design is a
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(a) Schematic diagram of kagome structure (b) Actuated bending and twisting deformations [Figure modi-
fied from original]

Figure 2.3: Morphing kagome structure [13]. Equivalent or differential actuation results in bending or
twisting morphing respectively. The deformations are small due to actuator limitations.

kagome plane and flexible skin separated by a truss-like tetrahedral core. Lucato et al. [13] demonstrate

this design, which is capable of bending and twisting using embedded linear actuators. Figure-2.3

shows a schematic diagram of the structure as well as the resulting morphing deformation. The authors

empirically demonstrate that the structure can morph as desired under a significant load (more than 30

N tip load in a cantilevered setup). They also suggest that the structure would be able to withstand

a 294 N load if the structure were not actuator limited. This load-carrying capability is impressive

given that the stainless steel core members have a 0.75 x 1.5 mm cross section with a length of 51 mm,

resulting in a lightweight structure; see [13] for a detailed analysis of the strength-to-weight capabilities

of the structure. Despite its favourable strength-to-weight properties, the structure’s deformation is

small, as seen in Figure-2.3(b). A corrugated composite structure with elastomeric skin is another

alternative [44]. This design consists of carbon-fibre reinforced polymer (CFRP) rods along each fold of

the corrugated structure. These rods, combined with an increase in second moment of area due to the

corrugation, provide the desired out-of-plane bending stiffness as well as zero-ν properties. This design

proves problematic when large deformations occur and the corrugated structure becomes flattened,

thereby reducing the bending stiffness as the deformation increases.

The advantage of these systems is that the skin is not of great concern, since the structure can be

designed in such a way that the skin is a highly compliant face sheet, providing the necessary aerodynamic

surface. The drawback however, is their increased mass, due to the additional structure. Therefore, the

resulting objective is to design a morphing skin that can support large loads without an underlying

structure.

2.2.2 Stiffness Tailoring of Composites by Multistability

Multistability has been suggested as a possible solution for morphing skins as the skin can exhibit different

stable configurations tailored for a given application. The basic principle behind multistability is the

minimization of total potential energy (Rayleigh-Ritz method) and is employed by numerous authors.

This method is used to obtain the local potential energy minima, each corresponding to a unique stable

state of a multistable composite laminate. Emphasis must be placed on the term ”local”, since a stable

state of a laminate can be in a relatively high strain energy state. This results in rapid snap-through

when the laminate is acted upon by an external force, thereby increasing the potential energy above its

local minimum. It is common for non-symmetric composite laminates to exhibit multistability, but it

can also be achieved in a structure comprised of multiple components.
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(a) FE model of bistable morphing composite
air inlet [12]

(b) Multistable composite twisting structure
[24]

Figure 2.4: Multistable composite structures. The morphing air inlet is designed for two stable states
(inlet closed or open) by tailoring the bending stiffness along its length. The twist morphing structure
has three stable states with the intermediate state (darker configuration in the figure) being the minimum
strain energy state. The other states are stable only due the design of the structure’s geometry.

Multistable Composite Structures

This approach uses monostable and/or multistable composite materials, having increased strain energy

due to mechanical deformation, as the driving component for the morphing. Daynes et al. [12] demon-

strate a morphing composite air inlet, whereby a flat, monostable composite laminate is deformed into

a sigmoidal shape with its ends rigidly fixed. In this design, the bending stiffness of the laminate is

tailored in the regions that experience large curvature changes by varying the width and thickness of

the laminate along its length. The resulting structure is bistable with each stable state corresponding

to the open and closed positions of the air inlet respectively, as shown in Figure-2.4(a). This concept

introduces the idea of stiffness tailoring by folding, which is further discussed in Section-2.2.4.

Similarly, a multistable twisting composite structure is introduced by Lachenal et al. [24], where

two composite flanges are separated by rigid spokes. The two flanges are initially curved and thus

pre-stressed when flattened and attached to the spokes, as shown in Figure-2.4(b). The structure is

tristable; however, two of the stable states are in a state of high strain energy which correspond to

local potential energy minima. These states are “stable” only because of the presence of the spokes.

A small external input results in snap-through to the intermediate primary stable state. Much like

the underlying structures, the extra components add weight to the design, thus limiting the benefit of

using such a structure. Another disadvantage of multistability in general is the difficulty in controlling

the transition between stable states. This snap-through is typically very rapid and a large amount of

energy is transferred from the system. The number of different configurations is limited to the number

of stable states, which would not be useful for a control surface, for example. Therefore, the applications

in aircraft design for multistable systems are limited.

Multistable Composite Laminates

Multistability in unsymmetric composite laminates occurs during the curing process due to the variation

of thermal expansion of each ply in different directions resulting in out-of-plane deformations. [0n/90n]

laminates assume a bistable cylindrical curvature configuration (i.e. zero Gaussian curvature), with the

transition being a twisting mode due to uniform heating, as demonstrated by Eckstein et al. [14] in

Figure-2.5(a).
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(a) Transition between zero Gaussian curvature stable states
due to temperature change [14]

(b) Stable states of bonded non-zero Gaussian curvature laminates [25]

Figure 2.5: Multistable composite laminates. They either exhibit a more useful zero Gaussian curvature
(left), even during transition (snap-through), or non-zero Gaussian curvature (right) which is an awkward
saddle shape.

Lee et al. investigated the bonding of two monostable saddle-shape (non-zero Gaussian curvature)

laminates to attain bistability. The two original laminates are mirrored and then flattened and bonded.

The two stable states, as seen in Figure-2.5(b), thus correspond to the stable state of each original

laminate. The application of this saddle-shape morphing in aerospace is not as useful as cylindrically

curved laminates, due to its awkward shape which makes attachment to other structural components

challenging. Schultz et al. [40] apply the same idea of joining two laminates in order to achieve a bistable

twisting airfoil. The challenges facing this design are the difficulty of achieving a suitable airfoil shape

as well as the rapid snap-through effects. A simple example of bending morphing is that of Bowen et

al. [7] where a cantilevered composite beam is stable in the raised state and can snap through to its

deflected stable state by shape memory alloy (SMA) actuation.

There is also some research into hybrid composite laminates which include an isotropic material ply

(usually metallic) offering the benefit of increased out-of-plane stiffness. A brief analysis on the effects

on a laminate of the variation of certain parameters of a steel ply can be found in [9]. Compared to a

traditional laminate, the stable curvatures of the hybrid laminate are not affected while the snap-through

load is increased more than tenfold.

Even though these multistable laminates are lightweight, compared to multistable composite struc-

tures, the resulting shapes are often impractical. Thus, the potential applications are even more limited

than multistable structures.

Stiffness Tailoring Using Prestress

The use of multistable laminates in adaptive structures is troublesome due to low stiffness and relatively

small shape changes [11]. An alternative multistable design is achieved via prestress of specific plies of

the laminate. During the curing process, the fibres in the outer plies are prestressed and then released

once cured. Through-thickness residual stresses develop and cause the laminate to deform resulting

in multiple stable states. As mentioned previously, multistability in unsymmetric laminates results in

irregular shapes that are often impractical for implementation in adaptive structures. More practical

shapes, such as non-Gaussian bending, are achievable with symmetric bistable laminates. An application
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of this is aircraft control surface deflection and is demonstrated by Daynes et al. [10] using a bistable

flap for a helicopter rotor blade.

The challenges surrounding prestress as a viable option for stiffness tailoring are the manufacturing

constraints and the resulting induced state of stress. Manufacturing such structures is complex and

therefore can be costly, since extra tooling is required and the process requires significant quality control.

The induced state of stress may be problematic if the intended application is a critical component. In-

flight loads could cause premature failure of the structure, so it would need to be over-designed, thereby

increasing its weight.

2.2.3 Flexible Matrix Composites

As mentioned previously, elastomers are materials capable of large elastic strains, but they are not ideal

for load carrying [22]. A flexible matrix composite (FMC) is a possible solution to this problem; the

fibres provide the required strength while the elastomeric matrix provides increased strain capability.

Murray et al. [30] propose a one-dimensional morphing laminate whereby the stiffness of the composite

laminate is tailored by aligning the fibres predominantly in one direction within a high-strain matrix.

Fibre orientation has a significant impact on the stiffness of the FMC and in this case the orientation is

chosen so as to maximize the difference in perpendicular elastic moduli. The matrix-dominated direction

is aligned with the desired morphing direction. The out-of-plane stiffness is relatively low, but one can

use pre-tension in the fibre-dominated direction to induce high out-of-plane stiffness while still being

able to stretch the laminate in the matrix-dominated direction.

Murray et al. conduct empirical validation of out-of-plane deflections of a ±75◦ laminate for varying

applied loads and pre-tension values. They also investigate the effects of fibre and matrix elastic moduli

as well as the size of the composite laminate. The authors focus on one-dimensional morphing, which has

certain applications in aircraft, but many applications require two- or three-dimensional morphing, such

as a morphing flap. In such applications, fibre pre-tension is challenging to implement, so it is useful

to consider the effects of the other parameters without pre-tension. Figure-2.6 shows the effects of fibre

and matrix moduli on the out-of-plane deflections of the laminate. It can be seen that the compliance is

primarily affected by the fibre elastic modulus rather than that of the matrix, assuming that a relatively

low elastic modulus matrix is employed.

Maqueda et al. [26] characterize the mechanical properties of a silicone-based, high-strain compos-

ite material. They conduct their analysis on unidirectional laminates only, not considering angle-ply

laminates. Nonetheless, this investigation provides useful information regarding the expected material

properties of elastomeric composites. It is found that the rule of mixtures provides accurate predictions

for tensile and bending properties, but predictions of the compressive properties are highly inaccurate,

over-predicting the elastic modulus by a factor of 3. The authors cite two potential sources of error,

namely the initial waviness of the fibres, and non-uniform loading in the compression experiment setup.

They also suggest the possibility that the rule of mixtures is inadequate for predicting the compressive

properties of composites of this type, but they remain unconvinced. The authors also observe fibre

microbuckling in the compression experiments, which is investigated in great detail by Jiménez [21]. In

this current work, [(±45F)n] layups are primarily used, where F denotes a plain-weave fabric, so fibre

microbuckling is less of a concern.
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(a) Varying fibre elastic modulus (b) Varying matrix elastic modulus

Figure 2.6: ±75◦ flexible matrix composite out of-plane deflections for an applied pressure load of 1.20
kPa for varying fibre pretension along with fibre and matrix elastic moduli [30]. The fibre elastic modulus
has a greater impact on the stiffness of the laminate compared to the matrix elastic modulus.

2.2.4 Dual-Matrix Composites

A traditional fibre-epoxy laminate can be combined with the aforementioned FMC, resulting in what

is known as a dual-matrix composite. The term dual-matrix composite typically refers to the silicon-

carbide (C/SiC) type which is a resilient ceramic with increased ductility [32]. However, the dual-matrix

composite referred to here is on the macroscale where multiple matrix materials with different properties

are used in discrete regions to tailor the stiffness in those regions. The literature available for this

field of research is somewhat limited given the relative novelty of this technology, but some interesting

work has been conducted by researchers and companies to produce as well as investigate dual-matrix

composites. Compared to the aforementioned stiffness tailoring techniques, dual-matrix composites are

arguably the most practical for morphing applications, given their compactness, low weight, relative ease

to manufacture, and superior stiffness tailoring capability. For this reason, dual-matrix composites are

chosen for further investigation in this work.

Jiménez [21] presents a folding Miura-ori design with a silicone/epoxy dual-matrix composite, and

this is further extrapolated to a deployable space antenna for CubeSats [39]. The panels of the structure

are traditional glass-fibre reinforced polymer (GFRP) with epoxy resin as the matrix material, while

the fold lines have a silicone-based matrix. The elastomeric silicone permits large curvature changes

with folds close to 180◦ being demonstrated, as shown in Figure-2.7(a). The damage tolerance of this

material is exceptional, given that the flexible resin is capable of high strains well exceeding unity. This

particular laminate is fabricated using UV-cure silicone but this processing path can be limiting, since

it requires translucent fibres such as glass. Since weight is a dominant driving factor for aircraft design,

engineers preferentially utilize carbon fibre over glass fibre, which has lower stiffness- and strength-to-

weight ratios. However, glass fibre and other fibre types are still used as they have some beneficial

properties depending on the application. Carbon fibre dual-matrix composites therefore require matrix

materials which have alternative curing processes. L’Garde Inc. have developed dual-matrix composites

using carbon fibre as seen in Figure-2.7(b). The manufacturing process for the carbon fibre laminate
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(a) Glass fibre Miura-ori pattern [21]

(b) Carbon fibre Miura-ori pattern [26]

Figure 2.7: Folding Miura-ori structures using dual-matrix composites. Both the glass fibre and carbon
fibre designs exhibit large curvatures with almost 180◦ folds, thereby demonstrating the high strain
capability of the silicone regions.

is proprietary information, so a novel manufacturing technique is used in this work and is detailed in

Chapter-3.

2.2.5 Fibre Tow Steering

Panesar and Weaver [35] investigate the use of fibre tow steering to design a bistable morphing flap.

One advantage of tow steering is that the fibre angles, and hence mechanical property directivity, can

be altered within a ply without the need for discontinuous fibres. Another benefit is that the ply can

be integrated more easily with the surrounding structure. In this case, the authors use fibre-orientation

optimization to create a morphing flap that is integrated into the wing skin. The fibre alignment at the

joint between the wing and the flap matches that of the wing structure while at the trailing edge of the

flap, the angles are vastly different (up to 90◦) to suit the desired morphing shape. The top two plies of

the flap laminate have variable angle tows (VATs) while the bottom two plies have 0◦ fibre orientation

thereby inducing bistability in the laminate. Figure-2.8(a) shows an example of one of the results of the

optimization process; the authors limited the angle variation between elements to 30◦ to ensure practical

fibre rotations which can actually be fabricated.

The testing of the flap yielded trailing edge deflections of greater than 50 mm for a 700 x 200

mm flap. Although the results of this investigation demonstrate the feasibility of a bistable flap using

VAT, the retracted shape of the laminate is aerodynamically problematic due to non-zero curvature

which varies along the span of the flap as seen in Figure-2.8(b). This is typical of bistable laminates

which often exhibit non-zero curvature in their stable configurations, thus a flat bistable laminate is
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(a) Fibre angles resulting from optimization process

(b) Demonstration of morphing flap

Figure 2.8: Bistable morphing flap using variable angle tows [35]. The flap achieves the desired morphing
deformation, but it exhibits a non-flat surface in the undeflected position.

not easily achievable. To the author’s best knowledge, there are no flat bistable laminate designs.

Furthermore, this particular bistable morphing flap design has only two discrete flap positions so there

is no control over the intermediate deflection of the flap. Multistable designs with three or more stable

states would be more beneficial but more challenging to design and optimize. The authors do not consider

aerodynamic loads which would have a significant effect on the deflection of the flap. Nonetheless, this

design provides a basis for potential morphing flap designs using VAT technology and with the rapid

development of composite manufacturing techniques, complex designs are becoming increasingly feasible.

VAT techniques are potentially useful for dual-matrix laminates in that the compliance of the flexible

region can be additionally tailored whilst maintaining continuous fibre paths.

The benefits of fibre tow steering are substantial but the drawback to this technology is the manu-

facturing complexity. Specialized machinery is required, resulting in an expensive fabrication process.
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2.3 Anticlastic Effects in Beams Subjected to Bending

2.3.1 Anticlastic Curvature Modelling

The bending of a plate or beam is typically accompanied by an anticlastic curvature in the orthogonal

direction to the axis of applied curvature as shown in Figure-2.9. The deformed shape of the cross

section due to the anticlastic effect has been investigated thoroughly with some of the first work being

conducted by Ashwell [4], who models this behaviour in isotropic plates. Pomeroy [37] expands on the

previous work of Ashwell by investigating the impact of this phenomenon on a beam’s cross-sectional

second moment of area. This work provides valuable insight into the transition between narrow beam

theory and wide beam theory. When a principal curvature is induced in a narrow beam by an applied

moment, M , the transverse anticlastic curvature is defined by

κy = −νκx, (2.1)

where ν is the Poisson ratio. Thus, the transverse curvature is constant and a linear function of the

principal curvature. Wider beams, however, have a non-linear relationship between the perpendicular

curvatures. Pomeroy uses the assumption made by previous authors that the anticlastic curvature can

be represented by a beam on an elastic foundation. The author derives an expression for the curvature

of a wide beam and shows that the curvature near the edges of the cross-section follows the narrow beam

theory whilst the curvature elsewhere is

κy =
d2w

dy2
, (2.2)

where w is the deflection in the z-direction. The theoretical derivations and assumptions made therein

are applicable to materials that have a Poisson ratio no greater than 0.5. Even though this work serves

as a foundation for understanding the effects of anticlastic bending, the expressions obtained cannot

be applied to composite analysis where it is common to encounter Poisson ratios in excess of 0.5. For

example, the author expresses w in terms of ordinary and hyperbolic trigonometric functions of argument,

ay, where y is a position along the width of the cross section and

a =

[
kdl(1− ν2)

4EI

]1/4
. (2.3)

The important term in Equation (2.3) is (1− ν2) while the undefined parameters are not important for

this discussion. Evidently, for a Poisson ratio of close to unity (which is possible for certain composite

layups, particularly ±45◦), a approaches zero resulting in an undefined function for w. Nonetheless,

Pomeroy’s work is useful for understanding anticlastic effects in beams, especially the transition from

narrow beam to wide beam behaviour.

Pao [36], and Hyer and Bhavani [20], extend the theory to composite laminated plates. The authors

derive theoretical models to predict the deformed shape of the plate cross-section for an induced longi-

tudinal radius of curvature, R. This radius of curvature can be related to the applied moment, M , if

the bending stiffness of the plate or beam is known. This theoretical model forms the foundation of this

work and is presented in detail in Chapter-4.
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Figure 2.9: Anticlastic effect in a beam due to an applied moment [Modified from original source [42]]

2.3.2 Neutral Axis Definition

The geometric neutral axis of a cross section may not necessarily be the actual neutral axis when a beam

or plate is subjected to a bending moment. The geometric neutral axis, z̄, is calculated by discretization

of the arbitrary cross section into N infinitesimal elements of area Ai and distance zi from a reference

axis, and evaluating the expression

z̄ =

N∑
i=1

Aizi

N∑
i=1

Ai

. (2.4)

Equation-2.4 assumes that the location of the neutral axis is entirely a function of the cross-section

geometry, that is, the neutral axis coincides with the centroid. In addition, this theory assumes that the

beam is a straight beam. It is well documented in the literature that the neutral axis does not coincide

with the centroid for curved beams [18]. This also applies to beams undergoing large curvatures, where

the beam can no longer be assumed to be straight.

The well-known definition of the actual neutral axis is the axis at which the bending stress, and

likewise the strain, is zero. However, this does not provide an indication of its location without knowing

the stress distribution. Another definition is that the sum of moments about the neutral axis, from the

compressive and tensile regions, must equal the bending moment in the beam. In addition, the sum

of forces must equate to zero (for pure bending load cases) to ensure equilibrium. For relatively thick

sections of a material which exhibits identical compressive and tensile elastic properties, the geometric

neutral axis will generally coincide with the actual neutral axis. Most composite applications employ

thin laminates, so the anticlastic effects have a greater impact on the location of the neutral axis and,

as a result, the second moment of area (Section-4.3 investigates this in more detail). Furthermore, the

elastic properties of certain materials can differ significantly in tension and compression (see Section-3.3).

The combination of small thickness and relatively large shift in neutral axis compounds the increase in

the second moment of area of the beam’s cross section.
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Manufacturing Process and Material

Characterization

The manufacturing process of a dual-matrix laminate poses some unique challenges. First, the selected

matrix materials need to be mutually compatible, as well as compatible with the fibres. In addition, the

interface between the matrix materials needs to be free of voids, as well as having minimal overlap. If

there is significant overlap or excessive voids, the flexible region can be compromised and the effectiveness

of the dual-matrix is reduced. Furthermore, predicting the mechanical behaviour of the flexible region

becomes challenging, if not impossible.

This chapter details the manufacturing procedure of the dual-matrix laminates fabricated for this

work. Carbon fibre reinforced epoxy and carbon fibre reinforced elastomer are mechanically tested in

tension and compression to characterize their material properties.

3.1 Material Selection

There are various types of fibres commonly used in composites, but for typical applications there are

essentially two choices, namely glass or carbon fibres. The only benefit of glass compared to carbon

in this particular application is its translucency. As with the UV-cure silicone used in the dual-matrix

laminate designed by Jiménez [21], glass fibres are essential to allow the matrix to cure completely. How-

ever, carbon fibre has superior stiffness, strength and density properties, thereby allowing for enhanced

efficiency of the whole structure. Since the primary application of this research is related to cabin inte-

riors, aesthetics also play a role in the choice of materials, and carbon fibre is widely regarded as more

aesthetically appealing than fibreglass. Therefore, carbon fibre is chosen even though the use of non-UV

curing elastomeric resin becomes necessary. Plain-weave carbon fibre fabric is used in this work because

of its superior workability compared to unidirectional tape. Unidirectional tape is typically supplied in

thin strips (only a few inches wide), so the allowable laminate dimensions are limited, especially for an

angle-ply layup, whereas woven fabric is usually supplied in large rolls of a few feet wide. Unidirectional

plies are also more susceptible to fibre misalignment during hand lay-up, as the fibres are dragged in the

direction in which the resin is applied. Unidirectional carbon fibre prepreg is often used to prevent this,

but this is not suitable for dual-matrix applications. In this application, plain-weave fabric is advanta-

geous over other weave patterns, since the fibre tow length for each undulation of the weave is as small

15
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as possible, which has greater resistance to fibre-tow buckling (see Section-3.3.3). The specifications of

the plain-weave fabric supplied by Freeman Manufacturing are 3K tows (warp and fill) with a 12 x 12

(ends x picks) construction and a weight of 5.7 oz./sq.yd.

Two matrix materials with significantly different elastic moduli are essential to ensure that there

is a large enough disparity in the bending stiffness of each region of the laminate. Traditional epoxy

(Araldite LY 8601 / Aradur 8602 System) is used in the rigid section and polyurethane elastomer

(Freeman 1040) is used for the compliant section. The latter is chosen by comparing a number of

elastomers including silicone-based materials. Freeman Manufacturing supplies polyurethane elastomers

at a relatively inexpensive cost compared to silicone-based resins. Two elastomers are compared, namely

Freeman 1040 and 1050. The 1040 elastomer is specified as an overnight-cure flexible elastomer while the

1050 is an overnight-cure semi-rigid elastomer. Freeman 1040 is preferred due to its higher compliance.

This elastomer also has a rapid gel time of 28 minutes, which is advantageous for isolating the elastomeric

resin, preventing excessive seepage of the resin outside the intended area of application when curing.

Similarly, UV-cure elastomeric resins are beneficial for isolating the compliant regions of a laminate, but

the opacity of carbon fibre inhibits the curing of the resin between plies, as mentioned previously.

3.2 Dual-Matrix Fabrication

3.2.1 Method

A two-stage fabrication process is employed for the manufacture of the dual-matrix laminate. This

procedure is demonstrated in Chapter-5 with the manufacturing of a tray table prototype.

Stage One

1. Measure and cut all the necessary peel plies, plastic films, breather ply and carbon fibre fabric

plies.

2. Place a thin plastic film on the mould (or flat plate), as well as a peel ply on top of the plastic

film. Alternatively, one can use a release agent instead of the peel ply for a higher quality surface

finish.

3. Demarcate the isolated area on the peel ply to which the elastomeric resin will be applied.

4. For the desired fibre volume fraction, measure out the appropriate quantities of polyurethane

hardener and resin, according to the manufacturer’s specification (ratio of 10:1 respectively for

Freeman 1040). Mix them well. It is a good idea to prepare 150% of the required resin to allow

for losses during vacuum cure. Special note: once this step is reached, subsequent steps need to

be conducted quickly before the elastomer gels.

5. Apply a proportionate amount of elastomeric resin to the designated area on the peel ply.

6. Place the first pre-cut fibre ply in the desired orientation on the wet resin. Special note: Due to

the high viscosity of the elastomeric resin, the layup has to be done ply by ply or, at most, two

plies at a time to ensure sufficient resin penetration.

7. Apply elastomeric resin on the fibre ply being careful not to damage the fibres nor allow the resin

to escape outside the defined boundary.
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8. Repeat steps 6 and 7 for all the plies making sure to use all the resin.

9. Cover the wet laminate with another peel ply, followed by a breather ply.

10. Place a vacuum pipe close to, but not on top of, the laminate and cover with another plastic sheet.

This second plastic sheet needs to have double sided tape along its edges to ensure a vacuum seal.

11. Turn on the vacuum system and ensure that the vacuum quality is adequate.

12. Leave to cure for a minimum of 16 hours.

Stage Two

For the second stage of the process, repeat stage one with epoxy resin in the remaining dry sections.

Ensure that the epoxy closes the gap between the sections (the elastomeric resin acts as a dam), but be

careful not to induce overlapping of the resins. Leave the vacuum bagged laminate to cure for 24 hours.

Due to the peel ply, the surface finish of the laminate is relatively rough and aesthetically undesirable.

Certain applications may require a better surface finish, as with this work for instance, given that the

primary application is a tray table in a commercial aircraft. In order to obtain a smoother surface finish

with a more appealing carbon fibre appearance, one can replace the bottom peel ply with a release agent.

In this work, Huntsman Renlease R© 76 US is used.

3.2.2 Micrographs

Micrographs are taken of the elastomer/epoxy interface as well as the carbon fibre/elastomer layup.

Figure-3.1(a) shows this interface for a [(±45F)4] laminate. It can be seen that there are very few voids,

providing a high quality continuous matrix. Another observation is that the elastomer region is thicker

than the epoxy region by approximately 180 µm. The manufacturing process revealed a prominent

difference in the viscosity of the two resins. As a result, less of the excess elastomeric resin is expelled

during the vacuum seal, compared to the epoxy resin. Furthermore, the quick gel time of the elastomer

resin has a significant effect on the final laminate thickness, as well as the quality. For example, Figure-

3.1(b) shows a section of a [(±45F)8] laminate where the gel time is exceeded during manufacturing.

The vacuum cannot induce sufficient pressure on the laminate to expel these voids, and the result is a

poor quality layup. The lesson learnt from this is that for laminates with many plies, it is essential that

the gel time is not exceeded before the vacuum is applied to ensure sufficient cure quality.

3.3 Composite Mechanical Properties

All tensile and compressive testing discussed in the following sections is conducted using a MTS 880

Material Test System with a 100 kN load cell. An Electronic Instrument Research LE-05 laser exten-

someter is used for strain measurements. Figure-3.2 shows the different tension and compression setups.

The tensile specimens are gripped using mechanical grips while the compression specimens are fixed in a

Wyoming Test Fixtures Inc. compression test fixture to ensure accurate alignment (See Appendix-B for

the apparatus details). The material properties obtained through testing are summarized in Table-3.1.

Subsequent sections explain these results in more detail.
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(a) Elastomer/epoxy interface (b) Elastomer region with voids

Figure 3.1: Micrographs of dual-matrix composite layup. The interface between the matrix materials
shows good penetration of resin with few voids. The thicker elastomer laminate shows poor penetration
quality with many voids, when the gel time of the resin is exceeded during hand lay-up.

Table 3.1: Measured material properties

Parameter Elastomer CF/epoxy
[(0/90F)]

CF/epoxy
[±45F]

CF/elastomer
[(0/90F)]

CF/elastomer
[±45F]

Et (MPa) 2.47 45,300 11,900 21,000 38.0/1171

Ec (MPa) – 73,500 7,920 – –
νxy 0.45–0.50 0.09 0.85 0.55 ∼1.0

The laminate samples used in the material characterization are nominally 20 mm wide and 1 mm

thick for the tensile tests, and 20 mm wide and 1.6 mm thick for compression; the larger thickness delays

the onset of buckling. The lengths of the specimens are also shorter compared to the tensile specimens,

as seen in Figure-3.3. The laminates are prepared for testing by affixing aluminum tabs to the ends

using heat-cure adhesive film. The tabs prevent damage to the fibres that would otherwise be caused by

the mechanical grips. It is found that for higher temperatures, the adhesive cures well but the elastomer

resin melts, causing irreparable damage to the samples. However, at lower temperatures the adhesive

doesn’t bond the parts effectively. A range of temperatures are investigated and presented by Ahmadi

et al. [1] who find the optimal temperature to be 175◦F, providing strong adhesive bondage with no

damage to the laminate samples.

3.3.1 Polyurethane Elastomer

An elastomer test sample, supplied by Freeman Manufacturing & Supply Company, is tested in tension

to acquire the mechanical properties of the elastomer. The results of this test are shown in Figure-3.4

where the same sample is tested at three different axial displacement rates. The average elastic modulus

of the elastomer is 2.47 MPa which is shown to be independent of strain rate.

The Poisson ratio of the elastomer is difficult to measure experimentally; there are two techniques

available to the author that are attempted. First, a strain gauge is affixed to the sample during tensile

testing. These tests revealed unexpected results with an extremely low Poisson ratio which is unchar-

acteristic of an elastomer, for which a Poisson ratio close to 0.5 is expected. Cyanoacrylate adhesive is

1See Section-3.3.3
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(a) Tensile testing setup (b) Compressive testing setup

Figure 3.2: Experimental apparatus for material characterization.

Figure 3.3: Laminate test samples for material property characterization in compression (left) and
tension (right).
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used to bond the strain gauge to the elastomer and a finite element (FE) analysis of the setup shows

that the difference in elastic moduli of the two materials affects the strain at the point of interaction.

In other words, as the elastomer contracts due to Poisson effects, the adhesive limits this contraction,

thereby suggesting a lower strain than is truly experienced by the elastomer sample. While the elastic

modulus of the adhesive used here is not explicitly published by manufacturer (Krazy Glue R©), Mizrahi

et al. show that the elastic modulus of Dermabond R© cyanoacrylate medical adhesvie is approximately

500 MPa [29]. The accuracy of the elastic modulus is unimportant as the purpose of this comparison is

to demonstrate the effects of the different elastic moduli of the two materials, being in the region of two

orders of magnitude. For the purpose of the FE simulation, 500 MPa is used as the elastic modulus for

the adhesive. Figure-3.5 shows the results from the FEA; Abaqus outputs strain as logarithmic strain

instead of engineering strain. For the purpose of visualization, the contour of the x-direction logarithmic

strain, LE11, is plotted to show that the strain in the region of adhesive application is lower than that at

a distance from the adhesive, where the strain is relatively uniform. The engineering strain is manually

calculated by extracting the relative x-displacement (U1 in Abaqus) of points A and B in Figure-3.5,

and dividing by the width of the adhesive region (5 mm). In the FE model, a y-displacement boundary

condition of 5 mm is applied to the top of the sample, so the strain in the y-direction is known. Table-3.2

shows the results from the FEA, as well as from the experiments.

The second technique considered for measuring the Poisson ratio is speckle pattern image correlation,

however, the paint used in this technique cracks when the sample is strained excessively, thereby nullifying

the image correlation data. As a result, a value within the range of 0.45–0.5 is assumed sufficient.

3.3.2 Carbon Fibre/Epoxy Laminate

Tensile Testing

Two different layups are tested in tension, namely [(0/90F)4] and [(±45F)4]. Figure-3.6 shows the results

of the [(0/90F)4] tensile test. The effective elastic modulus in the longitudinal direction is 45.3 GPa and

the Poisson ratio is 0.090. The transverse strain results for Sample 2 are omitted because the strain gauge

detached from the sample during testing. Nonetheless, the other two samples are in good agreement

for the Poisson ratio. The elastic modulus correlates well with the predictions of classical lamination

theory (CLT), which predicts a value of 43.7 GPa. There is a discrepancy in the Poisson ratio, with the

theoretical prediction being 0.031. This is most likely a consequence of the theory applying to laminates

of unidirectional plies specifically, while the samples have woven plies.

Figure-3.7 shows the results of the [(±45F)4] tensile test, and the measured elastic modulus is 11.9

GPa with a Poisson ratio of 0.85. CLT predicts an elastic modulus of 3.84 GPa and a Poisson ratio of

0.94. The elastic modulus of the epoxy is estimated to be around 500 MPa as suggested by Huveners

et al. [19]. Once again, this discrepancy is expected due to the limitations of CLT, especially since

Table 3.2: Reduction in measured Poisson ratio of an elastomer with surface adhesive of varying thickness

Parameter No adhesive Adhesive
(1 micron)

Adhesive
(10 microns)

Experiments

εy 0.152 0.152 0.152 N/A
εx 0.0682 0.0461 0.0328 N/A
νyx 0.450 0.304 0.217 0.0061



Chapter 3. Manufacturing Process and Material Characterization 21

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Strain (10
−3

)

S
tr

e
s
s
 (

M
P

a
)

 

 

2mm/min

5mm/min

10mm/min

(a) Tensile stress-strain curve

0 50 100 150 200 250 300 350
−2

−1.5

−1

−0.5

0

0.5

Longitudinal Strain (10
−3

)

T
ra

n
s
v
e

rs
e

 S
tr

a
in

 (
1

0−
3
)

 

 

2mm/min

5mm/min

10mm/min

(b) Transverse strain versus longitudinal strain

Figure 3.4: Tensile testing data for Freeman 1040 polyurethane elastomer for the characterization of the
stiffness and Poisson ratio.
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Figure 3.5: FE model showing reduction in strain of an elastomer due to an adhesive on its surface.
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[±45] laminate properties are dominated by shear, which would behave differently for unidirectional

plies versus woven plies, although the predicted Poisson ratio is reasonably close to the experimental

results.

Compressive Testing

The compression properties of carbon fibre/epoxy laminates are obtained experimentally through com-

pression testing of 1.6mm thick laminates for both [(0/90F)8] and [(±45F)8] layups. The results are

shown in Figure-3.8 and the average measured Young’s moduli for the [(0/90F)8] and [(±45F)8] lami-

nates are 73.5 GPa and 7.92 GPa, respectively. The latter value is calculated in the near linear region

for strains less than 0.003.

3.3.3 Carbon Fibre/Elastomer Laminate

Tensile Testing

The tensile testing of the [(0/90F)4] layup is difficult due to shearing between the aluminum tab adhesive

and the sample. The mechanical grips provide sufficient clamping force for all other testing except for

this case. The interface between the adhesive and elastomer does not have sufficient strength to overcome

the large tensile force. Hydraulic clamps may be useful for this application but there is a risk of damaging

the samples with excessive clamping force. Mejia-Ariza et al. [28] conduct experiments on carbon fibre

reinforced elastomers, and they likewise find that the tabs shear off the samples during testing. They

attempt to use hydraulic clamps but these crush the test samples.

The key parameter desired from these tests is the effective Young’s modulus of the laminate. This

test setup provides sufficient data to determine this value to be approximately 21.0 GPa; the results

of the tensile test are shown in Figure-3.9(a). The [(±45F)4] laminate exhibited interesting tensile

properties with the stress-strain relationship being bilinear. The Young’s moduli in these two linear

regions are measured as 117 MPa and 38.0 MPa respectively. The first transition region begins at a

strain of approximately 0.020 (stress ≈ 2.0 MPa) and ends at a strain of approximately 0.030 (stress ≈
3.0 MPa).

Compressive Testing

It is desired to obtain the Young’s modulus in compression for the elastomeric laminate, since it affects

the bending behaviour of the laminate (this is discussed briefly in Section-4.3.2). Compression testing

of thin elastomeric laminates proves to be difficult; carbon-fibre/elastomer tubes are more suitable for

this purpose. Consequently, the thin [(0/90F)8] laminate buckles under the load of the compression

test fixture itself, making compressive testing with the MTS system impossible for these elastomeric

laminates. Maqueda and Pellegrino [26] use unidirectional carbon-fibre/silicone rods as test samples.

They show that the elastic modulus in compression is approximately one third of that predicted by the

rule of mixtures. Theoretical predictions may not be applicable to elastomeric laminates in compression.

The carbon fibre and elastomer in these authors’ work have the same mechanical properties as those

used in this work. As an estimate, one can use the relative values for the tensile and compressive elastic

moduli. The ratio of the compressive modulus to the tensile modulus is approximately 0.47.
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Figure 3.6: Tensile testing data for [(0/90F)4] carbon fibre/epoxy for the characterization of the stiffness
and Poisson ratio.
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Figure 3.7: Tensile testing data for [(±45F)4] carbon fibre/epoxy for the characterization of the stiffness
and Poisson ratio.
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Figure 3.8: Compressive stress-strain results for carbon fibre/epoxy for two different layups.
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Figure 3.9: Tensile stress-strain results for carbon fibre/elastomer laminates of two different layups.
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Flexural Testing

Testing elatomeric composites in bending is difficult because a high resolution is required for low forces,

and the material test systems accessible by the author do not provide sufficient resolution for the thin

laminates being investigated. The bending of these laminates is the main focus of this work, so an

alternative setup is used and is presented in Section-4.4.1.

Four-point bending tests are, however, conducted on thicker [0/90] laminates to assess the onset of

fibre-tow buckling. This investigation is relevant to, but not the focus of, this work. The complete

analysis and results from these experiments can be found in [1].

Fibre-tow buckling is much more of a concern for a [0/90] laminate compared to [±45]. The former

has a significantly higher elastic modulus, so for the same curvature the bending stress is much greater

in the outer fibre tows, making them more susceptible to buckling. Secondly, the fibres are orientated in

line with the direction of bending stress, whereas the [±45] fibre tows have a reduced effective end-load,

which is a 45◦ component of the applied stress.

3.3.4 Laminate Density and Fibre Volume Fraction

The laminate fibre volume fraction, vf , can be determined if the density of the laminate, matrix and

fibres are all known. The expression for vf is derived by starting with the sum of masses,

ml = mf +mm

= ρfVf + ρmVm,
(3.1)

where the l, f and m subscripts denote the laminate, fibres, and matrix respectively. Equation (3.1) is

divided by the volume of the laminate, Vl, to obtain

ρl = ρfvf + ρmvm

= ρfvf + ρm(1− vf ).
(3.2)

Rearranging, the final expression is obtained as

vf =
ρl − ρm
ρf − ρm

. (3.3)

Five samples were measured and weighed, and the resulting average density of the elastomeric com-

posite is 1.31 g/cm3. The specified density of the elastomer is 1.04 g/cm3 with the average carbon fibre

density being 1.75 g/cm3. Therefore, the calculated fibre volume fraction is 0.38. A conservative value

of 0.35 is assumed in the experimental validation in Section-4.4 to account for variations in fabrication

quality and carbon fibre density.

3.3.5 Abaqus Material Characterization

To simulate the material behaviour accurately in Abaqus, one has to ensure that the specified material

properties are in agreement with experimental data. This is not the case for a carbon fibre/elastomer

laminate. It is found that CLT (which is used by Abaqus) severely underestimates the Young’s modulus

in the longitudinal direction, Ex, and likewise in the transverse direction, for a [±45] laminate. For

such a laminate, the orthogonal in-plane elastic moduli are equivalent, so the material can be potentially
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specified as isotropic. However, the limitation is that a Poisson ratio greater than 0.5 cannot be specified.

Since the Poisson ratio plays a very important role in anticlastic bending effects, specifying a Poisson

ratio of 0.5 is not acceptable.

Abaqus provides a material property option, known as Engineering Constants, whereby one can

input directly the values for E1, E2, E3, ν12, ν13, ν23, G12, G13 and G23. In this case, a Poisson ratio

greater than 0.5 can be specified. This option is a viable alternative, but the homogeneous nature of

the material may result in inaccurate predictions of through-thickness properties. Therefore, effective

elastic and shear moduli are specified for the elastomer to increase the longitudinal elastic modulus,

while maintaining a high Poisson ratio close to unity. An effective elastic modulus of 14.5 MPa and

effective shear modulus of 4.80 MPa for the elastomer are sufficient to achieve an overall laminate elastic

modulus of Ex ≈ 38.0 MPa. As discussed in Section-3.3.3, the elastic modulus is bilinear, but for the

purpose of the analytical investigation these linear material properties are used. There is also the option

in Abaqus to input directly the stress-strain empirical data as given in Figure-3.9(b). The same issue

arises with not being able to specify a Poisson ratio above 0.5. Since the transition between the two

linear regions occurs at a relatively low stress, it is likely that bending stresses in excess of this are

induced, when large curvatures are encountered.

Upon further investigation, it is interestingly found that the shear modulus of the matrix completely

dominates Ex for a [±45] laminate, according to CLT. The effective material properties can be tailored

to match the properties determined from testing, since there are two layup configurations and only two

variables that significantly affect Ex, namely Ef and Gm.

Section-4.2 discusses the finite element model in detail, as well as the implications of material char-

acterization on the results of the analysis and their applicability to reality.
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Anticlastic Bending

4.1 Anticlastic Effects in Laminated Composite Beams

The anticlastic effect, as described in Section-2.3, causes an orthogonal curvature to the applied principal

curvature in a beam or plate. This phenomenon is a result of the Poisson ratio, which is typically between

zero and 0.5 for isotropic materials. This is because the shear modulus and bulk modulus must be positive

to make phyiscal sense. For example, a Poisson ratio greater than 0.5 would result in a negative bulk

modulus. Since the bulk modulus is a measure of a material’s resistance to volume changes when under

uniform pressure, a negative value states that the material volume would increase under compression.

Physically this is impossible, hence the Poisson ratio upper limit of 0.5. Note that this is only the case

for isotropic materials, whereas orthotropic composite laminates can feature Poisson ratios in excess of

0.5. Therefore, an alternative anticlastic bending model is required, such as that presented by Hyer

and Bhavani [20]. This chapter investigates this model and its applicability to the prediction of variable

bending stiffness of composite laminates. The increase in bending stiffness in composite laminates due

to anticlastic bending is yet to be characterized accurately, to the best knowledge of the author of this

work. The anticlastic effect has a particularly significant impact on the effective bending stiffness of a

dual-matrix laminate, which is further discussed in this chapter.

4.1.1 Anticlastic Bending Governing Equation

The deflection in the z-direction of the plate’s cross-section for a given longitudinal radius of curvature

is governed by the fourth-order ordinary differential equation (ODE)

d4w(y)

dy4
+ 4β4w(y) = 0, (4.1)

where w is the displacement in the z-direction (see Figure-4.1), and

β4 =
3(1− ν2)

R2
xh

2
, (4.2)

where ν is the Poisson ratio, Rx is the longitudinal radius of curvature in the x-direction, and h is the

thickness of the plate.

30
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Figure 4.1: Schematic of the anticlastic deflection of the laminate cross-section, showing the z-direction
deflection, w.

This governing equation presented here is in its simplest form and is only applicable to an isotropic

plate. Before the theory can be applied to a composite plate it is important to define a number of

variables. The well known system of equations for composite laminate analysis is given by{
N

M

}
=

[
A B

B D

]{
ε

κ

}
, (4.3)

where the N and M vectors are the applied force and moment, per unit width, respectively, A is the

extensional stiffness matrix, B is the coupling stiffness matrix, D is the bending stiffness matrix, and

ε and κ are the midplane strain and curvature vectors respectively. In the derivation in [20], Hyer and

Bhavani present an inverted form of equation (4.3) as{
ε

M

}
=

[
A∗ B∗

−(B∗)T D∗

]{
N

κ

}
, (4.4)

where

A∗ = A−1,

B∗ = −A−1B, and

D∗ = D −BA−1B.

(4.5)

Pao [36] presents the modified governing equation for a composite plate as

d4W

dY 4
−
[

2B∗21λ

A∗22D
∗
11 +B∗21

2

]
d2W

dY 2
+

(hλ)2

A∗22D
∗
11 +B∗21

2W = 0, (4.6)

where W = w/h, Y = y/b, and

λ =
b2

Rxh
. (4.7)

where b is half the width of the plate. The general solution of equation (4.6) is

W = C1 sinhαY sinαY + C2 coshαY cosαY, (4.8)



Chapter 4. Anticlastic Bending 32

where C1 and C2 are integration constants and

α = 4

√
b4

4A∗22D11R2
x

, (4.9)

which is obtained from [20]. The two integration constants are obtained by imposing the appropriate

boundary conditions, namely that the internal bending moment and shear force at the edges of the plate

(that is, at Y = ±1) are zero. Substituting these boundary conditions into the appropriate derivatives

of equation (4.8) yields {
C1

C2

}
= [H]−1

{
cλ

0

}
, (4.10)

where

H11 = aλ sinhα sinα+ 2α2 coshα cosα,

H12 = aλ coshα cosα− 2α2 sinhα sinα,

H21 = (−2α3 + aαλ) coshα sinα+ (2α3 + aαλ) sinhα cosα,

H22 = (−2α3 + aαλ) sinhα cosα− (2α3 + aαλ) coshα sinα,

(4.11)

and

a =
−B∗21h

A∗22D
∗
11 +B∗21

2 , c =
−A∗22D∗11

A∗22D
∗
11 +B∗21

2 . (4.12)

Now the integration constants are known and Equation (4.8) can be applied to a composite laminate

under uniform bending, provided that the laminate properties (i.e. the A, B and D matrices) are

known. These can be calculated relatively easily using classical lamination theory, given that the layup

configuration and ply properties are also known.

4.1.2 Model Verification

The applicability of the model is assessed by verifying the predicted anticlastic deflections of the laminate

cross-section, using the commercial FEA package Abaqus/CAE (version 6.12). This section compares

the anticlastic deflections from the model and from the FEM, for a range of applied curvatures. The

FE model is a three-dimensional analysis utilizing shell elements with a cross-section comprised of a

[±45]S composite layup with 0.25 mm lamina thickness and material properties as given in Table-4.1;

Section-4.2 provides further details of the finite element model. The model exhibits close correlation

to the FE results, especially for the wider laminate as shown in Figure-4.2 and Figure-4.3. The edge

deflection of the narrow laminate differs from the FE results by around 10–15%. The wider laminate

shows an error of approximately 10% for larger radii of curvature, while the error is less than 5% for

smaller radii of curvature. The predicted deflections are less accurate when the width of the laminate is

relatively small, which is most likely due to the interaction between the symmetric anticlastic deflections

about the x − z plane. This theory is strengthened by the better correlation of the results for the two

largest applied moments in Figure-4.2(b), where the laminate is relatively flat at its centreline (i.e. for

Y = 0), and therefore having negligible interaction between the symmetric deflections.
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Table 4.1: Lamina material properties for theoretical model comparison with FE

Parameter Value
Thickness (mm) 0.25
E1 (GPa) 116
E2 (GPa) 4.17
G12 (GPa) 1.59
ν12 0.285

4.1.3 Preliminary Experimental Investigation

A dual-matrix laminate is fabricated with the flexible matrix region at the midpoint along its length

as seen in Figure-4.4. To demonstrate the effect of the anticlastic behaviour on the bending stiffness

of a composite laminate, two dual-matrix strips of different widths are cantilevered, and the deflections

compared. A 10 mm wide strip is cut out of the larger laminate as shown in Figure-4.5(a). Euler-

Bernoulli beam theory suggests that the deflection of the cantilevered beam should be the same for

both laminates since the ratio of the applied load (the laminate’s own weight) to the second moment of

area are equal for both laminates, but Figure-4.5(b) shows that the deflections differ significantly. For

further analysis, a second sample is cut with a width of 20 mm, and a slit is made at the midpoint of

the flexible-matrix region (see Figure-4.6(a)) to ensure that the width of each half of the flexible region

is 10 mm for a fair comparison with the narrower sample. Figure-4.6(b) shows the bending stiffness

comparison and it can be seen that the laminates exhibit the same deflection. This confirms that the

effective bending stiffness of the laminate is highly dependent on its width, and hence the anticlastic

deflection of the cross section. Figure-4.7 clearly shows the anticlastic effect occurring in the laminate

for a large curvature.
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Figure 4.2: Normalized anticlastic deflection for increasing longitudinal curvature for a 1 mm thick
[±45]S carbon-fibre reinforced epoxy laminate.
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Figure 4.3: Normalized anticlastic deflection for increasing longitudinal curvature for a 1 mm thick
[±45]S carbon-fibre reinforced elastomer laminate.
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Figure 4.4: Dual-matrix laminate showing the elastomeric resin boundaries. The matrix to the left and
right of the central elastomer region is epoxy.

(a) Top view

(b) Side view

Figure 4.5: Bending stiffness comparison between narrow and wide dual-matrix laminates. The thin
laminate exhibits a significantly lower bending stiffness, even though the bending moment, per unit
width, is identical for both laminates.
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(a) Top view showing the slit

(b) Side view

Figure 4.6: Bending stiffness comparison between a 10 mm wide dual-matrix laminate and a 20 mm
laminate with a slit along its centreline. The equivalent deflection provides evidence of anticlastic effects
on bending stiffness.

Figure 4.7: Anticlastic effect clearly demonstrated for large curvature in a 20 mm wide dual-matrix
laminate with a slit.



Chapter 4. Anticlastic Bending 38

4.2 Finite Element Model

4.2.1 Overview

The Abaqus/Standard finite element model in this work is a three-dimensional (3D) shell analysis.

Four-noded shell elements are chosen since they account for bending (which is the primary focus of this

investigation) while allowing for simple management of cross section properties. The cross section is

specified as a composite shell comprised of laminae of varying orientation. In addition, shell element

thickness can be defined in the section properties, instead of being dependent on the 3D part itself. If

3D elements are used, the thickness needs to be discretized into multiple elements to accurately model

the through-thickness behaviour. The thicknesses of the laminates being investigated are significantly

smaller than the other two dimensions, thereby necessitating an excessively large number of elements

and, as a result, high computational cost. Instead, shell elements with five integration points per lamina

are employed. Reduced integration is chosen over full integration due to mesh-locking being encountered

for full integration; this is discussed in Section-4.2.3.

4.2.2 Boundary Conditions and Applied Loads

Since the anticlastic curvature is the focus here, it is important to ensure that the extracted nodal

deflections are not affected by any stress concentrations in the model. Initially, this is observed when a

fixed translation boundary condition is applied to the edge centre node in Figure-4.8. The anticlastic

deflections differ significantly to the theoretical predictions, but when the fixed boundary condition is

moved to the opposite end of the geometry (see Figure-4.9), the theoretical predictions and Abaqus

results are in close agreement.

To induce a bending moment in the shell, a rotation boundary condition is specified at the right-

hand edge, as shown in Figure-4.10. The value of the rotation is incremented from π/8 to π/2 to achieve

various radii of curvature, and the internal bending moment and anticlastic deflections are extracted.

4.2.3 Mesh Convergence and Element Selection

The shell model is beneficial in that it is virtually a 2D model (as far as computational cost is concerned),

with the ability to capture the 3D behaviour of the laminate. As a result, the run times of the simulations

are relatively low, so a fine mesh can be used without a significant time penalty. However, it is still

valuable to conduct a mesh convergence study for assurance. This analysis is conducted for a 50 mm

wide elastomeric laminate of [(±45)2]S layup with an applied radius of curvature of approximately 0.2

m.

There are two ways to extract the internal bending moment in the shell. The first is to determine

the reaction moment (RM) at the zero-rotation boundary condition in Figure-4.8, and the total reaction

moment is obtained by summation of the nodal RM values along the edge. The second method is to

extract the maximum section moment (SM), which is found at the centre of the plate. SM is a distinct

value which, when multiplied by the width of the laminate, provides the internal bending moment in

the plate. Realistically, these values should be equal but Abaqus yields different results, especially for

full integration, as seen in the mesh convergence results in Figure-4.11. This is expected since SM is

a unique value while RM is cumulative for all the nodes, so the errors at each node are compounded

during summation. The two parameters show evidence of convergence for finer meshes.
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Figure 4.8: Zero-rotation boundary condition (UR2 = 0) applied to the edge at which the anticlastic de-
flections are extracted. All other degrees of freedom must be unconstrained to ensure that the anticlastic
deflections are free from influence.

Figure 4.9: Fixed boundary condition applied to the centre node on the opposite edge of the laminate,
allowing only UR2 rotation to facilitate the applied rotation for inducing curvature in the laminate.
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Figure 4.10: Applied rotation (UR2) to right-hand edge to induce a constant curvature in the laminate.
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Figure 4.11: Mesh convergence for reaction and section internal moment for shell elements with full
integration (S4) and reduced (S4R) integration
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Coarse meshes with full integration exhibit mesh-locking, thereby over-estimating the internal bend-

ing moment. The reduced integration element converges significantly faster than the full integration

element. There is a 2.2% difference in bending moment for the S4R element between 760 and 12,000

elements, while the S4 element shows a 55% difference. Furthermore, the run times for the S4R element

are shorter compared to the S4 element, as shown in Table-4.2, although the simplicity of the analysis

allows short run times in general, even for the full integration element.

The anticlastic deflections are also considered in this study, and it is found that the percentage

difference between the theoretical predictions and the Abaqus results is no more than 1.6%, independent

of the mesh fineness for both the S4 and S4R elements.

In conclusion, the S4R element is superior for this model, and is therefore used throughout. The

exact number of elements in the model is geometry dependant in the numerous simulations for various

laminate dimensions. Between 2000 and 4000 elements, corresponding to 20 or 40 elements across the

width of the laminate are used. This provides sufficient accuracy with the simulation run time never

exceeding 120 seconds.

4.2.4 Abaqus Limitations

The model used in this analysis has certain limitations that can potentially affect the results, the main

limitation being the section definition of the composite layup. Abaqus does not provide an option for

woven-fabric composites; instead, the laminae are all unidirectional. The closest approximation to the

woven-fabric laminates used in this work is to specify a symmetric unidirectional layup of alternating

orientations, i.e. [(±45)2]S . However, the behaviour of laminates of this orientation is highly dominated

by shear, for which there is expected to be a significant difference between woven-fabric and unidirectional

laminae. Figure-4.12 provides evidence of this with large discontinuities in strain between lamina. It is

important to note the x-axis scale difference between Figure-4.12(a) and Figure-4.12(b); the shear strain,

LE12, is almost three orders of magnitude larger than the normal strain, LE11. This confirms that shear

is the dominant strain. The seemingly large discontinuities in Figure-4.12(b) are a result of the shear

in each lamina being in the opposite direction to the adjacent laminae. Upon closer inspection, it can

be seen that the magnitude of the shear strain across subsequent laminae is continuous, but of opposite

sign. This shear strain distribution is expected to look entirely different for a woven fabric laminate,

since there is interaction between the interwoven fibre tows of perpendicular orientation.

A common method in Abaqus for modelling reinforced concrete is to use rebar layers. It is possible

to apply this to a woven composite analysis, where a rebar layer is specified within each lamina, with

the rebar “fibres” being oriented perpendicular to the lamina orientation. However, this is also limited

because it does not take into account the interaction of the two layers. Many authors have modelled

the properties of woven fabrics, although most of the research has been conducted at the microlevel

Table 4.2: Convergence study details and simulation run times.

Mesh Coarse Medium Fine Finest
Ne 760 1,400 3,000 12,000
Element size (mm) 4 3 2 1
Run Time, S4 (s) 80 126 235 988
Run Time, S4R (s) 48 54 100 362
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by modelling repeating unit cells of overlapping fibre tows. The overall behaviour of the laminate is of

interest here, so modelling at the microlevel is impractical. The only alternative is to modify the stiffness

matrices in Abaqus. Raju and Wang [38] present modified CLT models for various weave patterns. These

models can be used in the FEM to better predict the behaviour of woven composites. This is outside

the scope of this thesis and has been recommended as essential for future development of this work in

Chapter-6.

Alternatively, a user-defined material can be created in Abaqus where the material properties of woven

composites are input directly, including Poisson ratios of greater than 0.5. This is worth considering as

a viable alternative to using Abaqus’ composite section option in future work.

Another important piece of information obtained from Figure-4.12(b) is the maximum principal

strain, overlaid to show the similar magnitude relative to the shear strain, which is expected. Further-

more, the point of zero principal strain coincides with the point of zero shear strain. This indicates the

location of the neutral axis of the cross-section.

4.3 Increase in Bending Stiffness Due to Anticlastic Effects

The anticlastic effect can result in a significant change in the geometry of the cross section of the

laminate. Therefore, the second moment of area of the cross section increases as the laminate undergoes

some curvature in the longitudinal direction. During bending, the convex surface experiences a tensile

stress while the concave surface is in compression, which is very well known for bending of plates and

beams. In the case of a [±45] carbon-fibre reinforced elastomer, the longitudinal elastic modulus is

non-linear as shown in Section-3.3.3. However, this non-linearity is most prominent for relatively large

strains, where the fibre orientations begin to change significantly without failure, possible due to the

high strain capability of the matrix material. In the case of bending, it is assumed that the strains are

small enough that the elastic modulus is constant. Therefore, the change in bending stiffness, EI, of

the plate is assumed to be solely dependent on the second moment of area, I, which is discussed in

subsequent sections. The elastic modulus in this case is the effective extensional stiffness of the laminate

in the longitudinal direction, Ex. The second moment of area is calculated with respect to the y-axis.

4.3.1 Bending Moment

Hyer and Bhavani [20] derive an expression for the longitudinal moment, Mx, for a given longitudinal

radius of curvature, Rx. However, the expression presented in their work yields highly inaccurate results,

compared to the FE results for the applied moment. It is assumed that the expression is incorrectly

presented since the authors experimentally validate their model, so their moment model is not used in

this work, whereas their anticlastic deflection model is used, as it has been shown to provide accurate

predictions. According to Hyer and Bhavani, the applied moment is given by

Mx =
−h2bµ

8αRxA∗22
− 2
(D12hαγ

b
+
D22b

Rx

)
, (4.13)
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Figure 4.12: Abaqus output for through-thickness logarithmic strains of a [(±45)2]S elastomeric laminate
at the integration points (five per lamina).
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where

µ = [2(C2
2−C2

1 )(sinh 2α+ sin 2α) + 4α(C2
2 − C2

1 )

+(C2
2 − C2

1 + 2C1C2) cosh 2α sin 2α

+(C2
2 + C2

1 − 2C1C2) sinh 2α cos 2α],

γ = (C1 + C2) sinhα cosα+ (C1 − C2) coshα sinα.

(4.14)

Equation-4.13 and Equation-4.14 are modified from the lengthy equations obtained in [20] by deleting

terms that equate to zero in this analysis as well as modifying the variable names to match those defined

in this work. Hyer and Bhavani account for initial radii of curvature, Rx0
and Ry0

, which are assumed to

be infinitely large here; these parameters are in the denominator in a number of terms thereby reducing

those terms to zero.

In this current work, the laminate is approximated as a homogeneous material with constant elastic

modulus and a large Poisson ratio, close to unity. Therefore, the bending stiffness of the laminate can

be approximated using the elementary beam theory equation

EI =
M

κ
, (4.15)

where M is the internal bending moment and κ is the curvature of the beam; for pure bending of a beam

with uniform cross section, κ is constant. So long as the M and κ are known (these can be measured

experimentally or extracted from the FEM), the bending stiffness can be obtained and compared with

theoretical predictions.

4.3.2 Shift of the Cross Section Neutral Axis

Despite the laminate in this instance being initially straight, some of the curvatures experienced are

large enough for it to be considered a curved beam. In a curved beam, the neutral axis is normally

shifted toward the concave side of the beam, however the neutral axis in the composite laminate moves

toward the convex side due to the anticlastic effect. This is most prominent in wider laminates, as shown

in Figure-4.13.

The discrepancy in the neutral axis location increases with increasing curvature so the maximum

curvature evaluated is presented here. To the best knowledge of the author, this discrepancy between

FE and theory has not previously been characterized. It is found that the neutral axis distance is a linear

function, with respect to the longitudinal curvature of the laminate. Figure-4.14 shows this relationship,

comparing the Abaqus results with the model predictions. Fitting a first order polynomial to each of

the data sets reveals that the curve passes through, or at least close to, the origin in all cases, which is

expected since the neutral axis does not shift for zero applied curvature. Figure-4.14(a) shows that for

narrow laminates, the results from Abaqus and the model coincide, independent of curvature. The same

relationship is exhibited for even narrower laminates. Wider laminates exhibit a large discrepancy for

the neutral axis shift, which may be a consequence of transition to wide-beam anticlastic behaviour.

Another explanation for a shift in the actual neutral axis is that the compressive and tensile elastic

moduli may not be equal. As introduced in Section-3.3.3, elastomeric composites have been shown to

have a lower compressive modulus than that in tension. As a result, the neutral axis shifts to maintain

equilibrium of forces and moments, and since the concave side is in compression, the neutral axis shifts
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Figure 4.13: Neutral axis comparison between Abaqus (plane of zero strain) and the model (geometric
neutral axis) for 50 mm and 120 mm wide [(±45)2]S laminates.
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Figure 4.14: Comparison of neutral axis location for increasing longitudinal curvature for 50 mm and
120 mm wide [(±45)2]S laminates. The neutral axis shift is normalized with respect to the laminate
thickness (2.1 mm), where zero on the vertical axis is the mid-plane of the laminate.
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towards the convex side. However, this explanation is only valid if the material properties are modelled

as such. In experiments this is certainly true, but in an analytical or FE model, where the material

properties are constant, this will not be the case. In this work, the neutral axis shift is first noticed in

the finite element model (seen in Figure-4.12(b)), which makes this phenomenon all the more interesting

since the different elastic moduli are not modelled in Abaqus.

4.3.3 Determination of the Second Moment of Area

Provided the thickness of the laminate is relatively small such that t� 2b, the anticlastic bending has a

significant effect on the second moment of area of the laminate cross-section. Furthermore, the increase

in bending stiffness is non-linear as the curvature increases. The integral for calculating the second

moment of area of a section in the y − z plane, as depicted in Figure-4.15, is given as

Iy =

∫
A

z2dA

=

∫
z

∫
y

z2dydz.
(4.16)

Supposing the width, l, of the elemental area is defined in terms of z as shown in Figure-4.15(b), the

calculation of the second moment of area becomes simplified. Fenner and Reddy [15] define the second

moment of area of the section as

Iy =

∫ z2

z1

z2l(z)dz. (4.17)

The section in this work is discretized in y instead of z, so l is now a function of y (see Equation-4.8),

and the integral is modified accordingly. The limits become y1 and y2, and the variable of integration is

substituted according to the relation

z = f(y),

dz = f ′(y)dy,

= φ(y)dy,

(4.18)

where, φ(y) is the slope of cross-section. The element width is defined as

l(y) =
h

sinφ(y)
. (4.19)

Thus, the integral now becomes

Iy = 2h

∫ b

0

[w(y)]2φ(y)

sin(φ(y))
dy. (4.20)

The integral is multiplied by two because Iy is calculated with y ε [0, b] since the cross section is symmetric

about the z-axis. Due to the complexity of the integral, especially since w and φ are functions of

trigonometric and hyperbolic functions, the closed form solution cannot be determined. The integral is

therefore calculated numerically for the cross-section using the trapezoidal method.
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Figure 4.15: Elemental area for an arbitrary cross section for determination of the second moment of
area.

4.3.4 Bending Moment Verification and Increase in Bending Stiffness

Abaqus Verification

For the purpose of verifying the bending moment model, the material properties of the laminate do not

need to match the experimental results in Chapter-3. However, there needs need to be consistency be-

tween the FEM and analytical model material characterization. The material properties in this analysis

are defined as described in Section-3.3.5 to achieve an effective elastic modulus of 38 MPa, and are listed

in Table-4.3.

Figure-4.16 through Figure-4.18 show the results for 2.1 mm thick [(±45)2]S laminates for widths of

30 mm, 50 mm and 120 mm, respectively. These widths correspond to three data sets obtained through

experiments. The purpose of this is to assess the accuracy of the model, with respect to Abaqus, for

subsequent comparison with the experimental results. The results here show that the model over-predicts

the bending stiffness of the laminate for narrow laminates (≤30 mm width). The model correlates well

with the FE results for wider laminates (≥50 mm width) as seen in Figure-4.17. However, the 50 mm

and 120 mm results show that the model is more accurate for smaller curvatures, while the results begin

to diverge for larger curvatures.

As the width of the laminate increases, higher-order polynomials are required to model the trend

of the FE results accurately, as seen in Figure-4.19 through Figure-4.21 for the 1 mm thick laminate.

These trend lines are only applicable over the range of curvatures shown here, and should not be used

Table 4.3: Material specifications of carbon fibre, elastomer, and lamina with a fibre volume fraction of
0.5, for use in the bending moment verification of 1 mm thick, [±45]S laminates.

Material Carbon Fibre Elastomer Lamina (vf = 0.5)
E1 (GPa) 230 0.015 115
E2 (GPa) – – 0.029
ν12 0.27 0.49 0.38
G12 (GPa) 50 0.005 0.0096
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for predicting bending moments outside this range. They are for the purpose of demonstrating that

the bending stiffness is not constant. The non-linearity of the results shows that there is an increase

in the bending stiffness of the laminate for increasing curvature, as expected. For wider laminates, the

prediction of bending moment from the analytical model diverges from the FE solution. This is likely

due to the transition from narrow- to wide-beam theory for the anticlastic effect. The bending stiffness

of the laminate is no longer purely a function of the second moment of area, since additional stiffness is

introduced due to the anticlastic curvature being constrained.

The applicability of the analytical model depends on the expected curvatures for a given application.

As long as the curvatures are not excessively large, the bending stiffness can be predicted with suitable

accuracy.

Increase in Bending Stiffness

Figure-4.22 and Figure-4.23 show the increase in bending stiffness due to anticlastic bending. Based on

the analytical model, the increase in bending stiffness is greater for thinner laminates than for thicker

laminates, for the same dimensions and curvature. For example, the bending stiffness of a 40 mm wide,

1 mm thick laminate increases by a factor of 5 for κx=10 m−1, while only a factor of 2 for the 2 mm

laminate. This is due to the thicker laminate exhibiting smaller anticlastic deflections, in addition to its

zero-curvature bending stiffness being significantly larger (by a factor of 8).

The increase in bending stiffness is larger for wider laminates, which is to be expected as the deflec-

tions are larger compared to narrower laminates. However, for very wide laminates (>60 mm) exposed

to large curvatures, the bending stiffness begins to plateau, as seen in Figure-4.23. This is due to the

wide-beam theory coming into effect. As the curvature increases, the central region of the laminate flat-

tens, thus the rate of increase in second moment of area reduces. These large curvatures are impractical

as it is found that the laminate is damaged (due to fibre tow buckling - see Section-4.4.3) long before

these curvatures are obtained, and the laminate bending stiffness reduces after buckling occurs.

Other laminate layups have lesser increase in bending stiffness since the anticlastic effect is maxi-

mized with this [±45] layup. (EI)0 increases rapidly as the orientation approaches 0◦, so the morphing

capability is significantly impaired. Conversely, if the layup approaches 90◦, EI0 becomes extremely

small and the laminate is too flexible; E approaches the low elastic modulus of the elastomer. Either of

these scenarios reduce the Poisson ratio of the laminate, compared to the [±45] layup. Certain applica-

tions may require a larger or smaller EI0 with acceptable limitations on curvature and bending stiffness

increase. The characterization of this bending stiffness increase provides a simple yet accurate method

for predicting the bending behaviour of elastomeric composites.

4.3.5 Effects on Bending Stiffness Due to Dual-Matrix Interaction

The preliminary experimental investigation discussed in Section-4.1.3 shows that the interaction between

the rigid and flexible regions causes a perceived stiffness increase in the flexible region, close to the

interface. A finite element analysis is conducted to determine the distance from the interface at which

the flexible region is no longer affected by the rigid region. The rigid region is assumed to be a fixed

boundary condition, and modelled as such in the FEM. An encastre (all degrees of freedom constrained)

boundary condition is applied to the same edge shown in Figure-4.8. The anticlastic deflections are

compared at increasing distances from the fixed edge. The distance at which the deflections match
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the theoretical predictions is considered to be the point where the flexible region is unaffected by the

dual-matrix interaction. Table-4.4 provides the results of this analysis. The analysis is conducted for

four geometries, that is, widths of 10 mm and 20 mm each with layups of [±45]S and [(±45)2]S . A range

of curvatures for each geometry is applied to assess whether the distance is independent of curvature. It

is found that there is a negligible difference for increasing curvature.

Table-4.4 shows that the ratio of the distance to the width increases slightly as the width increases.

Conversely, this ratio reduces for thicker laminates. This is because the thicker laminates exhibit smaller

anticlastic deflections compared to thin laminates, so the anticlastic bending is less constrained. Based

on this analysis, as long as the length of the section is greater than 2.5 times the width, the anticlastic

effect is unconstrained at the midpoint of the section. However, the behaviour of the section is still

affected by the interaction at its ends, but the impact of this diminishes as the length is increased

and/or slits are made in the section.

Table 4.4: Dual-matrix interaction effects for different laminates

Layup [±45]S [(±45)2]S
Width (mm) 10 20 10 20
Distance (mm) 24 50 20 48
Distance/Width 2.4 2.5 2 2.4
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Figure 4.16: Applied bending moment required for increasing longitudinal curvature of a 30 mm wide,
2.1 mm thick laminate, with a [(±45)2]S layup.
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Figure 4.17: Applied bending moment required for increasing longitudinal curvature of a 50 mm wide,
2.1 mm thick laminate, with a [(±45)2]S layup.
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Figure 4.18: Applied bending moment required for increasing longitudinal curvature of a 120 mm wide,
2.1 mm thick laminate, with a [(±45)2]S layup.
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Figure 4.19: Applied bending moment required for increasing longitudinal curvature of a 10 mm wide,
1 mm thick laminate, with a [±45]S layup.
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Figure 4.20: Applied bending moment required for increasing longitudinal curvature of a 20 mm wide,
1 mm thick laminate, with a [±45]S layup.
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Figure 4.21: Applied bending moment required for increasing longitudinal curvature of a 40 mm wide,
1 mm thick laminate, with a [±45]S layup.
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Figure 4.22: Normalized bending stiffness for increasing longitudinal curvature for 1 mm thick, [±45]S
laminates of different widths. Wider laminates exhibit significant increase in bending stiffness compared
to narrow laminates.
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Figure 4.23: Normalized bending stiffness for increasing longitudinal curvature for 2.1 mm thick,
[(±45)2]S laminates of different widths. Wider laminates exhibit significant increase in bending stiffness
compared to narrow laminates.
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4.4 Experiments

Four-point bending tests are conducted on a [(±45F)8], carbon fibre/elastomer laminate to validate two

theories. First, the anticlastic displacement is experimentally determined and compared to the theoretical

model. Second, the relationship between the curvature and applied moment is also investigated for

comparison. Only a 2.1 mm thick laminate is tested because thinner laminates exhibit impractically

high compliance. Thicker laminates are also ruled out due to manufacturing constraints; the short gel

time of the elastomer results in a non-uniform laminate since the bottom layer gels before the top layer

has been applied.

The laminate width is decremented for each subsequent test to gather as much information as possible

about the behaviour of the laminate for different widths. This setup enables the collection of a large

data set without having to manufacture multiple samples. The stresses and strains encountered in the

laminate during the experiments are sufficiently low (calculations are conducted in Section-4.4.2) for the

residual effects to be considered negligible, thereby justifying the use of the same laminate for all the

experiments. The laminate widths that are investigated are 100, 80, 70, 60, 50, 40, and 30 millimetres.

4.4.1 Experimental Setup

Use of the MTS setup to conduct the four-point bending experiments is impractical, since the 100 kN

load cell has a resolution of 10 N, which is too large for the expected loads. Using the same bending rig,

an alternate experiment is designed and is shown in Figure-4.24. The camera captures the anticlastic

curvature of the test sample.

The radius of curvature of the laminate is calculated using the output from the laser distance sensor.

The test sample is assumed to have a constant curvature as a result of the four-point setup. The radius

is determined from the equation

Rx =
H

2
+
W 2

8H
, (4.21)

where H and W are defined in Figure-4.25. The assumption of a constant radius is an approximation,

given that the horizontal components of the reaction force, FR, as well as the distributed weight of the

laminate, q, induce a moment. The moment induced in the laminate by the horizontal force is negligible

compared to the moment due to the vertical load, so it is acceptable to ignore its contribution. The

mass of the laminate is taken into account when calculating the applied moment. The masses used for

the applied force, F , are comprised of various combinations of 45g, 24g, 11g, and 5g mass pieces.

The applied moment at the centre of the test sample is given by

Mapp = Fd+
q

2

(
d2 − W 2

4

)
, (4.22)

where the parameters are defined in Figure-4.25. Pictures are also taken from the side of the sample

(same view as in Figure-4.25) to experimentally obtain the value of d, since it decreases as the deflection

increases.

The masses are placed inside a container, which is hung from the end of the laminate using wire to

ensure that the force acts downward. The container is secured to the laminate by a bolt with an over-

sized washer to distribute the load as much as possible. Even though the load application is relatively

concentrated, St. Venant’s principle states that further away from the point of load application, the load
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Figure 4.24: Experimental setup for four-point bending tests of elastomeric laminates. 1 - test sample,
2 - four-point bending rig, 3 - laser distance sensor for curvature measurement, 4 - mass bucket, 5 - HD
camera for photographing the anticlastic curvature.

Figure 4.25: Schematic showing the loading on the test sample during experiments. F is the applied
load, FR the roller reaction, and q the distributed loading of the sample’s weight.
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can be assumed statically equivalent to a uniformly applied moment, as in this case.

4.4.2 Results and Discussion

For the purpose of this discussion, only the results from the narrow 30 mm and 40 mm laminates, as

well as the wide 80 mm and 100 mm laminates, are presented here. This is to show the comparison of

the analytical model accuracy for wide and narrow laminates. The anticlastic effects are first discussed,

followed by the bending moment results.

Anticlastic Curvature

The photographs of the anticlastic curvature are processed using the open source image processing

software, ScanIt. The coordinates of the laminate’s top surface are extracted and normalized with respect

to the laminate thickness and width. The anticlastic deflection comparison between the theory and

experiments for narrow laminates is shown in Figure-4.26. The theory demonstrates good correlation for

narrow laminates, under-predicting the anticlastic edge deflections by less than 10% for larger curvatures

(i.e. smaller radii of curvature).

The theoretical and experimental results for wide laminates are presented in Figure-4.27. It is seen

that the theoretical model shows good correlation only for larger radii of curvature. As the radius

decreases, the experimental results display an earlier transition to wide beam theory than predicted.

The theoretical model suggests a more consistent curvature in the cross section, whereas the test sample

shows a flattening close to the centre of the laminate, which is characteristic of wide beam theory as

previously discussed in Chapter-2. The disagreement in the results is more pronounced for the 100 mm

sample than for the 80 mm sample, but both show evidence of flattening at the centre of the laminate.

Bending Moment

The bending moment predictions of the analytical model have been shown to correlate well with the

finite element results. To validate these results the bending moment applied to the samples is plotted

for increasing curvature, and compared with the analytical model.

To ensure that the sample used in the experiment is not damaged in each test, and can therefore be

used in subsequent tests, the bending stress is determined. The maximum bending stress encountered

in the laminate is calculated using the equation

σx =
Mz

Iy
, (4.23)

where z is the distance from the neutral axis to the furthest point in the cross section. Applying this

expression to the most heavily loaded test for each sample width, the maximum bending stress is found

to be 3.70 MPa, which is small enough to prevent any plastic deformation in the laminate during testing.

The results from the experiments are given in Figure-4.28 and Figure-4.29. For both narrow and

wide laminates, the model significantly underestimates the bending stiffness of the samples. The reasons

for this are discussed in the next section on CLT limitations. As a result, the analytical model is not

suitable for predicting the bending stiffness of woven-fabric laminates.

The experiments confirm an increase in bending stiffness for increasing curvature. The experimental

results are approximated to second-order polynomials to demonstrate this non-linearity. The results in
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Figure 4.26: Anticlastic curvature comparison between analytical model and experimental data for
narrow laminates. The centreline is the longitudinal line running down the centre of the length of the
laminate.
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Figure 4.27: Anticlastic curvature comparison between analytical model and experimental data for wider
laminates. The centreline is the longitudinal line running down the centre of the length of the laminate.
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Figure 4.28: Bending moment for increasing longitudinal curvature for narrow laminates with [(±45F)8]
layup. The analytical model predictions are shown, displaying a large underestimation of the bending
stiffness.
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Figure 4.29: Bending moment for increasing longitudinal curvature for wide laminates with [(±45F)8]
layup. The analytical model predictions here also underestimate the bending stiffness.
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Figure-4.29 for wide laminates show a better correlation (in terms of curve gradient) compared to narrow

laminates, which predict a near linear relationship for these relatively low curvatures.

In Section-4.3.2, a neutral axis discrepancy between the FE and analytical models is shown for wider

laminates experiencing curvatures as small as 2.5 m−1 (see Figure-4.13(b)). If this shift is indicative

of reality, then it is possible that the bending stiffness is higher than predicted, which is seen in the

experimental results. However, there is insufficient evidence to suggest that this neutral axis shift

occurs, since it is difficult to quantify in experiments.

The neutral axis does shift due to the difference in tensile and compressive moduli, but this would

result in a lower bending stiffness as compared to a uniform elastic modulus. Thus, even if it were

possible to measure the neutral axis location, it would be difficult to determine which phenomenon has

the greatest impact on the neutral axis shift.

Classical Lamination Theory Limitations

Despite CLT providing sufficiently accurate predictions for the behaviour of unidirectional laminates, it

does not accurately model the laminae interactions for such laminates, let alone woven laminates. CLT

models each lamina as a uniform distribution of fibres and resin and does not account for interlaminar

shear effects, which are particularly influential in the bending behaviour of [±45] laminates. This is

particularly evident in Figure-4.12 in the shear discontinuities, although the analytical model correlates

well with the unidirectional FE analysis, suggesting that CLT is a reasonable approximation.

However, a problem arises with the experimental results which show a large discrepancy with the

predictions. The error can be attributed to the lack of accuracy for woven laminates. This can be

best explained by considering the shear behaviour of the two [±45] laminates under an applied bending

moment. Assuming no interlaminar effects, the fibres in unidirectional laminae are free to rotate due

to shear. Fibres in woven laminae, on the other hand, are constrained by the perpendicular interwoven

fibres. The fibres in the +45 direction can no longer rotate freely since they are being resisted by the

-45 fibres, and vice versa. As a result, the lamina will have greater stiffness than predicted.

Now reintroducing interlaminar effects, the stiffness is further increased due to the aforementioned

rotation being additionally constrained. CLT accounts for neither of these, so it is expected for the

laminate in reality to exhibit significantly higher stiffness, which is seen here in the experimental results.

In Section-4.1.2, it is shown that an epoxy laminate transitions to wide-beam anticlastic bending

theory far earlier than for an elastomeric laminate. The epoxy laminate has a significantly larger elastic

modulus, which supports the hypothesis that woven laminates have higher bending stiffness since the

transition to wide-beam theory occurs in the experiments (see Figure-4.27) despite the theory suggesting

otherwise.

4.4.3 Fibre Tow Buckling

It is found that for large curvatures of the elastomer region of the laminate, the fibre tows undergo

buckling on the surface as shown in Figure-4.30. This poses a design challenge for dual-matrix laminates

because it imposes limitations on the allowable curvature. Fibre tow buckling is more prevalent in [0/90]

laminates when some of the fibres are aligned with the direction of applied stress.

Ahmadi et al. [1] model an individual fibre tow as a beam on elastic foundation where this foundation

has the properties of the elastomer material. This enables the authors to predict the buckling load of the
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Figure 4.30: Fibre-tow buckling of a [(0/90F)8] elastomeric laminate.

laminate. This research is not further investigated by the author of this work, although it is worthwhile to

consider the implications of this phenomenon on the design of dual-matrix laminates. Fibre-tow buckling

is not as much of a concern for narrow [±45] laminates which do not encounter it, even for relatively large

curvatures. It becomes an problem with wider laminates when the anticlastic curvature is constrained

and the strain energy in the laminate exceeds the minimum for which matrix failure occurs, resulting

in buckling of the tows. Regardless, wider elastomeric laminates are not as suitable for providing the

increased flexibility required in morphing applications, as compared to narrow laminates. Therefore,

fibre tow buckling is not a concern here but it does require careful consideration when investigating

larger deformations and/or wide laminate behaviour.
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4.5 Large Deflection Modelling of a Beam

4.5.1 Introduction

Euler-Bernoulli beam theory is an extensively studied and well understood theory of the deflection of

beams under various types of loads. This theory, however, is based on the assumption of small deflections

and hence the deflection does not affect the internal moment in the beam. In reality, the translation

and/or rotation of the applied load with the deflection of the beam results in a change in the internal

moment. In beams with relatively high bending stiffness this change is negligible, but this is not true for

compliant beams where large deflections are encountered. The literature reveals two techniques used to

compute the large deflection of beams. Firstly, an integral approach utilizing an elliptic integral technique

can be used to solve the complex integrals associated with this problem [8]. The second approach is to

solve the problem numerically. While more time intensive, the numerical approach is easier to implement

and provides highly accurate results. The work of Nallathambi et al. [31] has proved useful in deriving

a model for a cantilevered beam with a follower load.

In a four-point bending test, the reactions at the supports are normal to the contact point between

the beam and the support. In this case, the support reaction acts as a follower load, meaning that the

reaction force remains normal to the surface of the beam. This must be accounted for in the internal

bending moment expression for the beam. The following section describes the formulation of the internal

bending moment expression for a straight cantilevered beam with a follower load. The derivation is based

on the aforementioned work by Nallathambi et al., with slight modification.

4.5.2 Derivation of the Large Deflection Governing Equation

Figure-4.31 shows a visual representation of a beam encountering large deflection under a follower load.

The internal moment in the beam is given by

M(s) = Py(L− uL − x(s)) + Px(vL − y(s)), (4.24)

where s is the arc length of the beam at a given point, L is the length of the beam, and uL and vL are

the free-end displacements in the x and y directions respectively. The coordinates at any point along

Figure 4.31: Straight cantilevered beam with an inclined follower load undergoing large deflection, where
the assumptions in Euler-Bernoulli beam theory no longer apply.
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the beam are determined by the expressions

x(s) =

∫ s

0

cosφ(s)ds, and

y(s) =

∫ s

0

sinφ(s)ds,

(4.25)

which are modified from [31]. Differentiating (4.24) yields

dM

ds
= −Py

dx

ds
− Px

dy

ds
(4.26)

= −Py cosφ(s)− Px sinφ(s). (4.27)

The load components are related to the applied load by

Px = P sin(φL + β)

Py = P cos(φL + β)
(4.28)

where β is the inclined angle of the applied load, as defined previously. The well known definition of the

curvature of a beam is given by

κ =
M

EI
, (4.29)

which can be differentiated and substituted with (4.28), yieldiing

dκ

ds
=

d2φ

ds2
=

1

EI

dM

ds
(4.30)

= − P

EI
cos(φ(s)− φL − β), (4.31)

where the cosine term is obtained from manipulation of (4.27) using trigonometric identities. This second-

order differential equation is the governing equation for the deflection of the beam. This equation can

be integrated numerically to determine the deflection and is detailed in the next section.

4.5.3 Determination of the Beam Deflection

The numerical integration of this second-order non-linear ordinary differential equation (ODE) is per-

formed using the fourth-order Runge-Kutta (RK4) technique. This procedure can be found in Appendix-

A.

The governing equation can be solved in one of two ways using the RK4 method. It can be integrated

from the free end to the fixed end or vice versa. Integrating from the fixed end to the free end allows one

to impose the zero-slope boundary condition directly but the fixed end curvature and free-end slope need

to be assumed. Nallathambi et al. describe this as a two-point shooting technique. Integrating from the

free end (one-point shooting technique) eliminates the need to assume a curvature since the curvature at

the free end is known; it is zero unless an applied moment is introduced for which the induced curvature

can be calculated directly. The boundary conditions for a cantilevered beam at the fixed-end are

φ(0) = v(0) = 0. (4.32)
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(a) Undeformed laminate (b) Deformed configuration

Figure 4.32: CAD representation of a dual-matrix laminate with three elastomeric matrix regions (light
gray) with rigid epoxy resin elsewhere.

In order to determine the deflected shape of the beam, a free-end slope is initially assumed and the

RK4 method is conducted. This method is solved iteratively until the fixed-end slope is zero. The

free-end slope is incremented/decremented until a solution is obtained within a specified accuracy. The

magnitude of the increment/decrement value is reduced when the fixed-end slope passes through zero

and the direction of incrementation is reversed. This model is implemented in a MATLAB script.

4.5.4 Large Deflection Modelling of a Beam with Flexible Regions

This model can be used to determine the deflection of a composite beam with distinct sections along

its length of varying cross-section and/or material properties (see example in Figure-4.32). The moti-

vation behind obtaining such a model is for the modelling of a dual-matrix fibre-composite laminate for

application in morphing structures.

The above model is implemented by applying it to each distinct section of the beam and altering the

boundary conditions at the free end accordingly. The following assumptions are made for the model:

1. Each section of the beam, considered in isolation, behaves as a cantilevered beam.

2. The slope and displacement at the interface between adjacent sections are continuous.

The analysis first begins at the free-end of the beam and as mentioned in assumption-1, the end that

attaches to the next section is assumed to be “fixed”. This assumption is suitable since the load rotates

with the end of the beam. After calculating the deflected shape of the section, the internal moment

at the “fixed”-end can be determined. The same model is applied to the next section except that the

moment at the “free”-end is no longer zero. The moment obtained at this location results in a non-zero

curvature which is relayed to the model, and the same method is used to calculate the deformed shape.

It is important to note that the applied force is still acting at the end of each section but, due to the

rotation of the load, it is no longer perpendicular; the force is inclined at an angle, β (see Figure-4.31).
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This process is repeated through all sections of the beam until the true fixed-end of the entire beam is

reached. At this stage, the data for each section has been stored separately. Applying the condition that

the slope and deflection at the joints between subsequent sections are continuous (as per assumption-2),

the “free”-end slope and deflection of the first section are added to the values from the next section and

so on.

4.5.5 Model Verification

The large-deflection model is verified using Abaqus with 2D beam elements on a wire geometry with a

specified beam cross-section. The cross-section dimensions and material properties are given in Table-

4.5. The model exhibits highly accurate results, even for large free-end deflections as seen in Figure-

4.33. The maximum load displayed for this model is 14 N due to the FE simulation encountering

convergence issues for larger deflections, because the displacement corrections required to satisfy the

force and moment equilibrium equations are larger than the displacement increment. Therefore, the

simulation time increment required to achieve equilibrium becomes impractically small. Nonetheless,

the results are sufficient to show the high accuracy of the model, with respect to the FEM. The 2D FEM

does not account for Poisson ratios so the anticlastic effects are not modelled. This is not indicative of

reality, thus the anticlastic model needs to be incorporated into the large-deflection beam model.

4.5.6 Incorporating the Anticlastic Bending Model

Thus far, the large deflection model has assumed different but constant bending stiffness for each section.

Knowing that this is not the case for sections exhibiting large anticlastic curvatures, it is imperative to

incorporate the anticlastic bending model. Assuming that the curvature of the rigid section is small,

which is a valid assumption for the dual-matrix laminate, this model only needs to be incorporated in

the flexible region.

Due to the dual-matrix interaction (see Section-4.3.5) not being fully characterized, the bending

behaviour of the dual-matrix laminate is modelled as distinct sections with no interaction, as a first

approximation. Assuming that the flexible region length is longer than two and half times its width

(which can also be achieved by creating slits), this is a reasonable approximation.

Provided that the length of the flexible hinge is relatively small compared to the rigid section, the

curvature in the flexible region is constant. The initial calculated curvature at the “free”-end is obtained

as before but now it is passed through a loop which calculates the new I value for that curvature. The

initial curvature is an over-estimation so the new value for the curvature is less than the initial. This

loop is repeated until the curvature is within a specified accuracy, and then the curvature is forwarded

to the RK4 function. If the flexible region is long enough such that the curvature is not constant, this

loop can be placed inside the RK4 function. In this case, a new curvature has to be calculated at every

increment along the length of the beam, so the computation time increases substantially. The large-

deflection model can be tailored to suit a specific application, where the user can trade-off the desired

accuracy and computational cost.
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Table 4.5: Beam cross section and material properties for Abaqus verification of large-deflection beam
model.

Parameter Value
Width (mm) 40
Thickness (mm) 2
Second Moment of Area (mm4) 26.67
Erigid (GPa) 35
Eflexible (GPa) 0.5
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Figure 4.33: Large-deflection beam model verification using Abaqus FEA for 5 N and 14 N follower tip
loads, showing close correlation of the results.
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Applications

5.1 Composite Meal-Tray Table

The meal-tray table in a commercial aircraft is a very simple design, which has served its purpose well

for many years. However, this part is often relatively heavy, and since there are a large number of

them on board an aircraft, the cumulative weight of the tray tables is substantial. This presents an

opportunity to save weight on the interior design of the aircraft, by designing a tray table which is light

and strong. In addition, this application is an ideal opportunity to demonstrate the morphing capability

of a dual-matrix laminate, before the technology progresses to critical aircraft components.

Upon presentation of the dual-matrix technology to Bombardier Aerospace, the interior design team

requested a lightweight morphing tray table. Figure-5.1 is a conceptual design, provided by Bombardier

Aerospace, of the envisaged tray table. Ideally, the tray table would deploy upon some passenger input

and then remain in the horizontal position without a mechanical stop for a variety of objects on the

table, ranging from a lightweight meal-tray to a heavy laptop, but this is difficult to achieve.

The dual-matrix stiffness tailoring of the composite laminate is useful for achieving a reduced stiffness

in the effective “hinge”. Further tailoring of the stiffness, such that the stiffness of that section increases

as the curvature increases, is not particularly easy. Section-4.3 describes the phenomenon whereby the

bending stiffness increases as the curvature increases but this increase is insufficient to be of use in this

particular application.

5.1.1 Design and Analysis

Requirements

As requested by Bombardier Aerospace, the tray table must:

• support a load of 5 kg (heaviest laptop on the market).

• remain horizontal even with a reclined seat-back.

• accommodate beverages (this requirement is not addressed for the prototype, but it can be intro-

duced later on with ease).

• be heat resistant to hot meals placed on the table.

69
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(a) Stowed position (b) Deployed position

Figure 5.1: Bombardier conceptual drawing of morphing composite tray table. The current tray table
design in service is shown on the left seat.

• be lightweight.

The first two requirements are related in that the table must support a heavy load, but it must also

remain horizontal, even when there is no load on the table, yielding the need for a mechanical stop.

This functionality would ideally be included in the dual-matrix hinge itself, but the technology is not

advanced enough to achieve this. As a result, the tray table prototype is designed to remain horizontal

under it’s own weight, and any additional load placed on the tray table is supported by the mechanical

stop.

Hinge Design

The designer has the flexibility to include one or multiple hinges in the design in order to achieve the

required deflection. This is dependent on the aircraft requirements, for example the Bombardier Q400

aircraft has arm rests (to which the tray table would attach) that are near vertical, meaning that the

hinge has to allow for almost 90◦ deflection. One hinge is not ideal because it requires a relatively long

tray table to extend to the passenger.

In order to achieve a smooth transition from the near-vertical armrest mounting point, a double hinge

design is required, that is, two regions of flexible matrix material in each hinge. These regions can be

tailored separately to achieve different curvatures for a given load. The large deflection model derived in

Section-4.5 is used to determine the necessary parameters of the hinges to achieve the required deflection

for the tray table. The lower hinge transmits a greater bending moment than does the upper hinge, so

the lower hinge requires a larger bending stiffness and/or shorter length so that the curvature in the

hinge does not cause tray table to droop too low. Thus, one slit in the lower hinge and three slits in the

upper hinge (i.e. split into two and four sections respectively) are used in the large deflection model.

This model assumes that the elastic moduli of the adjacent regions are independent, which has shown

not to be the case for dual-matrix laminates. However, the model is suitable for a first approximation;

the predicted deflections are larger than the actual deflections, thus providing a conservative solution.

Figure-5.2 shows the deflection of the tray table prototype for an end-load of 1 N. This is the equivalent

load per hinge for the tray table’s own weight, calculated as 410 g (using a density of 1.3 g/cm3). To
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Figure 5.2: Tray table prototype predicted deflection under its own weight (±410 g), which is an equiv-
alent end load of approximately 1 N.

Table 5.1: Section and material properties for large deflection modelling of the tray table prototype.

Section CF/epoxy (Table) CF/epoxy (Hinge) CF/elastomer (Hinge)
Layup [(0/90F)10] [(±45F)8] [(±45F)8]
Width (mm) 2381 50 50
Thickness (mm) 2 2.1 2.1
Eeff (GPa) 45.3 11.9 0.117
Second Moment of Area (mm4) 159 38.6 Variable

achieve this deflection for the 1 N load, the lower hinge length is specified as 12 mm and the upper hinge

20 mm. The section properties for the different regions used in the large deflection model are given in

Table-5.1.

Again, this model is idealized and there are necessary assumptions made to simplify the model. The

results from this analysis provide a starting point for the fabrication of the actual tray table prototype.

The lengths of the two hinges are increased to account for the dual-matrix interaction. The prototype

is fabricated with hinge lengths of 30 mm and 35 mm for the lower and upper hinges respectively.

Mechanical Stop

Three concepts have been generated to address this design requirement. Two of the concepts are moving

mechanical mechanisms (see Figure-5.3(a) and Figure-5.3(b)). One has a fixed-length rod that runs in a

slider on the tray table; the rod makes contact with the end of the slider when the tray table is horizontal.

The other concept is a piston mechanism, for which the length of the piston can be designed to make

contact with the end of the cylinder, thereby securing the tray table in the horizontal position. Even

though it is desirable to have a system which eliminates the need for moving mechanical components,

1Half the actual width of the table since each double hinge supports half the load
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(a) Slider mechanism (b) Piston mechanism

(c) FMC concept

Figure 5.3: Various mechanical stop concepts to prevent deflection of the tray table beyond the horizontal.
The dual-matrix hinges do not provide sufficient stiffness to stop the tray table from deflecting further
when a load is applied to the table.

these concepts can support large tray table loads. Figure-5.3(c) shows a concept which utilizes a flexible

matrix composite (FMC) laminate as the locking mechanism. The laminate folds in the stowed position

(without damage due to high strain capability) and is elongated in the deployed position, as shown.

Since composites are particularly strong in tension, the laminate can be thin to achieve high curvatures

while still being able to provide effective resistance to tensile loads.

The slider mechanism concept is chosen for the prototype due to its relative simplicity and ease of

manufacturing. The slider component is mounted at the bottom of the hinge (see Figure-5.8(a)) to make

the mechanism as low-profile as possible.

The critical buckling load of the pinned-pinned hollow tube is given by the Euler buckling equation

Pcr =
π2EI

L2
, (5.1)

where the second moment of area is given by

I =
π

4
(r4o − r4i ), (5.2)

where ro and ri are the outer and inner radii respectively. The material is 6061 aluminum with a modulus
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of elasticity of 68.9 GPa [27]. The rod is sized assuming a worst-case 5 kg load, P . Figure-5.4 shows the

free body diagram of the system, where the edge of the first hinge is assumed to be a pinned boundary

condition. The maximum expected force in the rod is 430 N. Using this as an initial estimate for the

critical buckling load, the most suitable tubing is 1/4” outer diameter and 0.18” inner diameter (6.350

mm and 4.572 mm respectively). The length of the rod is 280 mm, yielding a buckling load of 506 N. The

safety factor is 1.2, which is low for a component that is subjected to human loading. Therefore, a larger

diameter rod should be retrofitted to ensure that the rod does not buckle. However, the mechanical stop

is designed to fail first so as to protect the expensive, and difficult to replace, composite tray table.

5.1.2 Prototype Fabrication

The manufacturing of the prototype is done in two parts. First, the double hinge system is fabricated

using the technique outlined in Section-3.2. Two hinges are made, one for either side as shown in

Figure-5.5.

There is an additional section of uncured woven fabric to allow for overlapping when the table section

is manufactured (this is the second part of the fabrication process which is shown in Figure-5.6).

There are two reasons for the two-part fabrication process, namely, ease of manufacture and stiffness

tailoring. Separate fabrication of the two hinges and table allows for easier integration of the three

individual components since alignment is done in the final stage. More importantly, the table can have a

different layup orientation compared to the hinges, thus achieving variable stiffness between the regions.

The hinge section is a [(±45F)8] layup to minimize the bending stiffness, while the table itself requires a

much larger bending stiffness (i.e. [(0/90F)10]). This could also be achieved by variable angle tows (see

Section-2.2.5), however this fabrication technique requires outsourcing so a discontinuous orientation

layup between the sections is preferred, although there is an overlap as shown in Figure-5.6 to ensure

effective load transfer. The overlap layup is demonstrated in Figure-5.7. This layup maximizes the

contact area, while minimizing the thickness of the overlap due to the cutouts as shown in Figure-5.6(b).

The layup depicted here is the reverse order of the tray table, i.e. the bottom layer shown here is the top

of the tray table. The laminate is fabricated this way to ensure that the top of the tray table is flat. In

addition, a better surface finish is achieved by using release agent instead of a peel ply (see Section-3.2).

Figure 5.4: Free body diagram for sliding mechanical stop
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(a) Curing of first epoxy region (b) Curing of second epoxy region

Figure 5.5: Vacuum bag curing of epoxy regions of the double hinge. The elastomer regions are previously
cured using the same procedure.

Two issues are encountered during fabrication of the hinges. First, it is found that the elastomer

resin in the bottom ply extends outside the intended boundary, whereas for the top ply it remains

within the boundaries. Similarly, the epoxy resin also spreads over a part of the elastomer region, which

is undesirable since the epoxy layer stiffens the flexible region. Techniques for preventing this are being

investigated, such as breather ply isolation. In this technique, the breather ply is isolated to the exact

enclosed region being cured, so that the rest of the laminate outside the boundaries is not penetrated,

due to the vacuum seal.

The final prototype assembly is shown in Figure-5.8. The tray table is mounted to a rigid wooden

frame to simulate a seat attachment. The hinges are twice as wide as they are long, so it is expected

that the effective stiffness of the hinges will be similar to that of the epoxy region, as seen in Section-

4.1.3. Therefore, it is predetermined that the hinges require slits to tailor their bending stiffness. As

discussed in Section-4.3.5, the anticlastic effect is unconstrained only when the width is at most one half

of the length. It is advantageous to begin with a hinge that is too wide so that the bending stiffness

can be tailored progressively by cutting more slits. In this specific application, the bending stiffness of

each hinge is tailored separately. This is necessary because the lower hinge transmits a larger bending

moment than the upper hinge. In addition, the upper hinge is designed for a larger curvature to achieve

the most ergonomic height of the tray table. Figure-5.9 shows the double hinge where three slits have

been cut in the upper hinge and one is cut into the lower hinge. The difference in hinge curvature is

clearly seen here.

5.1.3 Prototype Testing

The morphing tray table operation is demonstrated successfully. When the latch is released, the table

deploys as expected under its own weight and comes to rest in the horizontal position. A 1 kg weight

is placed on the tray and it is comfortably supported as seen in Figure-5.8(b). The limitation with this

design is an unconstrained degree of freedom, due to the double hinge. Under an applied load, the table

extends outward and drops down slightly, but the table remains horizontal during this translation.

The structural components themselves are designed to withstand a much higher load than 1 kg, but

the lack of rigidity in the structure precludes testing of the table at higher loads. The most practical

solution to this problem is one hinge instead of two, but this is potentially limiting since the double

hinge allows the tray table to extend further outward toward the passenger, making it more ergonomic.

This also prevents the fully-reclined seat in front from making contact with the table.
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(a) First table ply with hinges aligned (b) Example of a cut-out ply

(c) Placement of cut-out ply (d) Vacuum curing after epoxy resin application

Figure 5.6: Final tray table fabrication process, incorporating the hinges into the overall structure. The
laminate is initially over-sized so that the final cutting can be done more accurately.

5.2 Alternate Applications

Other applications of this technology have not been investigated extensively, but this section suggests

potential applications that may benefit from stiffness tailored dual-matrix composite structures. The

ultimate objective here is to provide materials that are beneficial for morphing of critical aircraft com-

ponents such as flaps and control surfaces. However, this technology is still maturing and requires

significant research before being implemented in such applications.

Another application, which is perhaps more relevant for the small increase in bending stiffness due

to anticlastic bending, is structural applications in space where high precision may be required, while

the loads are relatively small. The accurate modelling of a dual-matrix composite would be useful in

high precision applications, such as flexible robotic manipulators, to ensure that the end-point of a beam

(perhaps a manipulator) is tracked accurately.

The design flexibility provided by the numerous variables (thickness, orientation, material, geometry,

etc.) allows for a wide range of applicability for this technology.
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Figure 5.7: Layup of the overlap section. The black lines represent the rectangular table plies, the green
lines represent the cut-out table plies and the blue lines represent the hinge plies

(a) Stowed position (b) Deployed position

Figure 5.8: Tray table final prototype assembly with 1 kg weight as a demonstration.
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Figure 5.9: Prototype double hinge showing three slits in upper hinge and 1 slit in lower hinge for
stiffness tailoring
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Conclusions

This thesis investigates tailoring the bending stiffness of dual-matrix composites. The dual-matrix

laminate investigated here is comprised of an elastomeric region and an epoxy region. The local bending

stiffness of the elastomeric region is significantly lower than that of the epoxy region. This has allowed

for stiffness tailoring, using predetermined isolated sections of each matrix material, to achieve varied

bending stiffness in the laminate. This technology is utilized in a morphing composite tray table for

Bombardier Aerospace aircraft. A prototype was manufactured and demonstrated to behave as intended.

The relative novelty of this technology required the characterization of the composite material prop-

erties. First, the material properties of different layups of epoxy and elastomer resin laminates were

determined experimentally. It was found that the carbon-fibre/epoxy laminate had a uniaxial tensile

stiffness of three orders of magnitude larger than that of the carbon-fibre/elastomer laminate, for a

[±45n] layup. The elastic modulus values obtained from the experimental testing were larger than

those predicted by classical lamination theory (CLT), due to CLT assuming unidirectional laminae and

neglecting interlamina effects, while the actual laminate was fabricated from woven-fabric carbon fi-

bre. Obtaining the compressive properties of the flat elastomeric laminates was unsuccessful with the

available experimental setup, due to buckling of the samples.

A novel technique was developed for the fabrication of dual-matrix laminates using polyurethane

elastomer resin and epoxy resin as the matrix materials. The technique took advantage of the quick gel

time of the elastomer resin, by first curing the elastomeric region(s). The elastomer remained reasonably

isolated to the location of application, even during vacuum curing. The cured elastomeric resin acted

as a dam during curing of the epoxy regions, helping to prevent overlap of the resins. Manufacturing

difficulties were encountered for thicker elastomeric laminates (≥ 8 plies), as well as for woven fabric

patterns other than plain weave. It was found that the resin began to gel before the last few plies were

added, and the resin did not penetrate the fabric, resulting in voids in the laminate. This problem was

remedied by ensuring that the hand lay up process was performed quickly and/or by placing the resin in

a freezer before mixing to increase the gel time. It was also found that the epoxy resin slightly overlapped

the elastomeric region in the dual-matrix laminates. Techniques for preventing this are suggested for

future work.

In this work, it has been shown that the relative stiffnesses are not only a function of the matrix

material properties, but also a function of the laminate geometry. A 100 mm wide dual-matrix laminate

was fabricated to assess the quality of the manufacturing process, and coincidentally it was found that
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a narrow 10 mm wide strip of the laminate demonstrated a reduced stiffness (per unit width) in the

elastomeric region, compared to a 20 mm wide strip of the same original laminate. This provided

evidence of interaction effects between the two regions. This was briefly investigated in a preliminary

experiment, where slits were cut in the elastomeric region of the dual-matrix laminate, thereby making

the laminate narrower (same overall width as before the slits were made). It was determined, through

FEA, that the length of the elastomeric region was required to be a minimum of two and a half times

its width for these effects to have negligible impact on the behaviour of the laminate.

Using the anticlastic deflection model derived by Hyer and Bhavani [20], the anticlastic bending

of composites has been modelled and verified with Abaqus FEA. The model accurately predicted the

deflection of the cross-section for an applied longitudinal curvature, having higher accuracy for flexible

matrix composites than for epoxy resin composites. The change in cross-section shape resulted in an

increased second moment of area, and as a result, increased the bending stiffness of the laminate. This

increase was investigated, and the results showed that the increase was greatest for laminates with large

width and small thickness. It was also seen that, for large curvatures of wider laminates, the bending

stiffness began to plateau, due to the cross section deflection transitioning to wide-beam anticlastic

behaviour.

The derived analytical model correlated closely with Abaqus, but the experimental results displayed

a large discrepancy, with the analtyical model under-predicting the bending stiffness. However, the ana-

lytical predictions for the anticlastic deflection of the cross-section correlated well with the experimental

results. Wider laminates under large curvatures showed the greatest discrepancy. The reason for these

discrepancies was narrowed down to the composite layup. The analytical model and FE model specify

a layup of unidirectional plies, whereas woven fabric was used in the experiments. The woven-fabric

composites have increased shear stiffness, due to the woven laminae shear properties differing from that

of unidirectional laminae. The FEA revealed that the bending stress and strain were highly dominated

by shear for a [±45n] layup. Therefore, differences in the shear behaviour had a significant impact on

the bending stiffness of the laminate.

A model for beams undergoing large deflections was derived, using fourth-order Runge-Kutta numer-

ical integration, to predict the deflection of a beam comprised of adjacent flexible and semi-rigid regions.

The predicted deflections were verified with Abaqus, exhibiting highly accurate deflection results. The

anticlastic bending model was incorporated into the large deflection model, but dual-matrix interactions

at the interfaces were ignored, as a first approximation.

The aircraft applications of this work are numerous, from non-critical cabin components (e.g. flexible

composite hinges) to higher risk components such as control surfaces. This work was applied to cabin

interiors, specifically a morphing composite meal-tray table. The dual-matrix fabrication process devel-

oped in this work was used to construct a tray table prototype, and the prototype was demonstrated

to deflect as expected. The structure was designed to support a load of 10 kg on the centre of the tray

table, using a mechanical stop to maintain a horizontal surface. A double-hinge design (two elastomeric

regions in series, separated by an epoxy region) was used, which resulted in an extra degree of freedom

in the system, thereby limiting the testing to a 1 kg load, even though the components themselves were

designed to sustain the full 10 kg load.
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6.1 Recommendations

Modelling the bending stiffness of elastomeric laminates with improved accuracy requires the material

properties to be completely characterized, both in tension and compression. As seen in this work,

compressive testing of elastomeric laminates is challenging, due to buckling resulting from low bending

stiffness. The compressive properties can be obtained by fabricating elastomeric carbon-fibre tubes,

instead of laminates. The circular cross section significantly increases the bending stiffness (by a factor

of more than 60 for the same cross sectional area and thickness), therefore the buckling load will be

substantially larger, allowing the compressive modulus to be obtained.

The suppression of the anticlastic curvature due to the interaction between adjacent epoxy and

elastomeric regions has been investigated briefly, but further detailed analysis and characterization is

required to improve the accuracy of the derived large deflection model. This can be achieved by modelling

the transitional behaviour of the elastomeric matrix in the region close to the matrix interface. This

would only be necessary in cases where the length of the region is less than three widths of the cross-

section.

Since the strains and stresses encountered in the elastomeric laminates were relatively small, the

reduction in stiffness of the [±45n] elastomeric region, due to bilinearity (see Figure-3.9(b)), was not

taken into account. In applications where higher stresses and strains are expected, this reduction in

stiffness would significantly affect behaviour of the laminate, and thus should be considered.

The main limitation of this work is the specification of material properties in the analytical model

and Abaqus, which do not accurately represent woven-fabric composites. Therefore, it is recommended

to investigate alternative methods of accurately representing the laminates. Three potential methods in

Abaqus are: the addition of a rebar layer within the unidirectional lamina, specifying the material prop-

erties in different directions in the Engineering Constants material option, or providing the orthotropic

parameters (the Abaqus manual provides the formulae for determining these parameters).

The ideal morphing composite tray table would be unaided by an external mechanical stop, and

the composite structure itself be all encompassing, providing the deformation and locking features.

Achieving this is challenging without some kind of locking mechanism (this could be made of composites

too), as it requires an almost instantaneous increase in bending stiffness at the tray table’s horizontal

position. For the purpose of the prototype, the mechanical stop is sufficient for proof-of-concept, but it

is recommended for future design iterations to design an alternative low-profile locking mechanism.



Bibliography

[1] H. Ahmadi, C. A. Steeves, and C. Daraio. Mechanical characterization of elastic laminates for

dual-matrix composites. Master’s thesis, Swiss Federal Institute of Technology (ETH Zurich), 2016.

[2] Airbus. Qatar Airways A350 XWB – factsheet, December 2014.

[3] K. L. Alderson, V. R. Simkins, V. L. Coenen, P. J. Davies, A. Alderson, and K. E. Evans. How to

make auxetic fibre reinforced composites. Physica Status Solidi (B) Basic Research, 242(3):509–518,

2005.

[4] D. G. Ashwell. The anticlastic curvature of rectangular beams and plates. J. Royal Aeronaut. Soc.,

54, 1950.

[5] S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman. A review of morphing aircraft.

Journal of Intelligent Material Systems and Structures, 22(June):823–877, 2011.

[6] Boeing. 787 Aircraft Rescue and Firefighting – Composite Structure, April 2013.

[7] C. R. Bowen, H. A. Kim, and A. I. T. Salo. Active composites based on bistable laminates. In

ICMAT Symposia Proceedings, volume 75, pages 140–144, Singapore, 2014. Elsevier B.V.

[8] L. Chen. An integral approach for large deflection cantilever beams. International Journal of

Non-Linear Mechanics, 45(3):301–305, 2010.

[9] F. Dai, B. Zhang, and S. Du. A novel bistable hybrid composite laminate. International Conferences

on Composite Materials {ICCM}, 2009.

[10] S. Daynes, S. J. Nall, K. D. Potter, P. Margaris, P. H. Mellor, and P. M. Weaver. Bistable composite

flap for an airfoil. Journal of Aircraft, 47(1):334–338, 2010.

[11] S. Daynes and P. M. Weaver. Stiffness tailoring using prestress in adaptive composite structures.

Composite Structures, 106:282–287, 2013.

[12] S. Daynes, P. M. Weaver, and J. A. Trevarthen. A morphing composite air inlet with multiple

stable shapes. Journal of Intelligent Material Systems and Structures, 22:961–973, 2011.

[13] S. L. dos Santos e Lucato, J. Wang, P. Maxwell, R. M. McMeeking, and A. G. Evans. Design and

demonstration of a high authority shape morphing structure. International Journal of Solids and

Structures, 41:3521–3543, 2004.

[14] E. Eckstein, A. Pirrera, and P. M. Weaver. Multi-mode morphing using initially curved composite

plates. Composite Structures, 109:240–245, 2014.

81



Bibliography 82

[15] R. T. Fenner and J. N. Reddy. Mechanics of Solids and Structures, pages 642–645. CRC Press, 2nd

edition, 2012.

[16] FlexSys. At last, a shape-morphing aircraft wing is here - no flaps. Web Page, 2015. Available

from: http://www.flxsys.com/gallery.

[17] Air Transport Action Group. Facts and figures. Web Page, 2016. Available from:

http://www.atag.org/facts-and-figures.html.

[18] R. C. Hibbeler. Mechanics of Materials, chapter 6. Pearson Prentice Hall, eighth edition, 2011.

[19] E. M. P. Huveners, F. van Herwijnen, F. Soetens, and H. Hofmeyer. Mechanical shear properties

of adhesives. In Glass Perfomance Days, pages 367–370, 2007.

[20] M. W. Hyer and P. C. Bhavani. Suppression of anticlastic curvature in isotropic and composite

plates. International Journal of Solids and Structures, 20(6):553–570, 1984.
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Appendix A

Fourth-Order Runge-Kutta

Numerical Integration

The governing equation derived in Section-4.5.2 can be expressed in the form

φ̈+
P

EI
cos(φ− β − φL) = 0 (A.1)

where, as before, β and φL are constants and φ̈ represents the second derivative of φ with respect to s.

A modified form of the fourth-order Runge-Kutta method is employed for the second-order ODE.

First define the relations

κ =
dφ

ds
(A.2)

and
dκ

ds
= φ̈ = F (s, φ). (A.3)

Rearranging (A.2) and (A.3) one obtains

dφ = κds (A.4)

and

dκ = F (s, φ)ds (A.5)

where,

F (s, φ) = − P

EI
cos(φ(s) + β − φL). (A.6)

It is also necessary to define two variables, dφn and dκn which are variables necessary to implement

the four steps of the RK4 method outlined here. This method is obtained from the work of Wong [43]

and manipulated for application to a second-order ODE.

Step 1:

dφ1 = hκ(s)

dκ1 = hF (s, φ(s))
(A.7)
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Step 2:

dφ2 = h

(
κ(s) +

1

2
dκ1

)
dκ2 = hF

(
s+

h

2
, φ(s) +

1

2
dφ1

) (A.8)

Step 3:

dφ3 = h

(
κ(s) +

1

2
dκ2

)
dκ3 = hF

(
s+

h

2
, φ(s) +

1

2
dφ2

) (A.9)

Step 4:

dφ4 = h(κ(s) + dκ3)

dκ4 = hF (s+ h, φ(s) + dφ3)
(A.10)

Finally, the steps are combined using the equations

dφ =
1

6
(dφ1 + 2dφ2 + 2dφ3 + dφ4)

dκ =
1

6
(dκ1 + 2dκ2 + 2dκ3 + dκ4).

(A.11)

Now,

φ(s+ h) = φ(s) + dφ

κ(s+ h) = κ(s) + dκ.
(A.12)

This process is repeated with the new value of s until the end of the beam is reached. The value of

h depends on the required accuracy and/or time constraints. For simple problems, a small value for h

provides accurate results without being too time consuming.



Appendix B

Test Apparatus Specifications

Figure B.1: MTS 880 Material Test System calibration details

Figure B.2: Electronic Instrument Research LE-05 laser extensometer details

Figure B.3: Wyoming Test Fixtures Inc. compression test fixture details
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